

US 20200212323A1

(19) **United States**

(12) **Patent Application Publication**

HWANG et al.

(10) **Pub. No.: US 2020/0212323 A1**

(43) **Pub. Date: Jul. 2, 2020**

(54) **ORGANOMETALLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME**

(71) Applicant: **Samsung Electronics Co., Ltd.**, Suwon-si (KR)

(72) Inventors: **Kyuyoung HWANG**, Anyang-si (KR); **Kum Hee LEE**, Suwon-si (KR); **Jiyoun LEE**, Incheon (KR); **Aram JEON**, Suwon-si (KR); **Yoonhyun KWAK**, Seoul (KR); **Ohyun KWON**, Yongin-si (KR); **Sangdong KIM**, Seoul (KR); **Byoungki CHOI**, Hwaseong-si (KR)

(21) Appl. No.: **16/815,128**

(22) Filed: **Mar. 11, 2020**

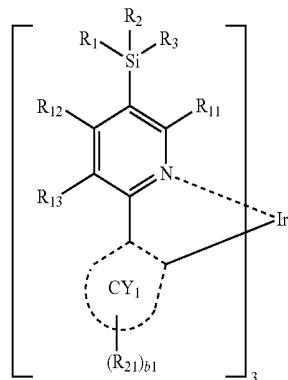
Related U.S. Application Data

(63) Continuation-in-part of application No. 15/066,451, filed on Mar. 10, 2016, now Pat. No. 10,629,829.

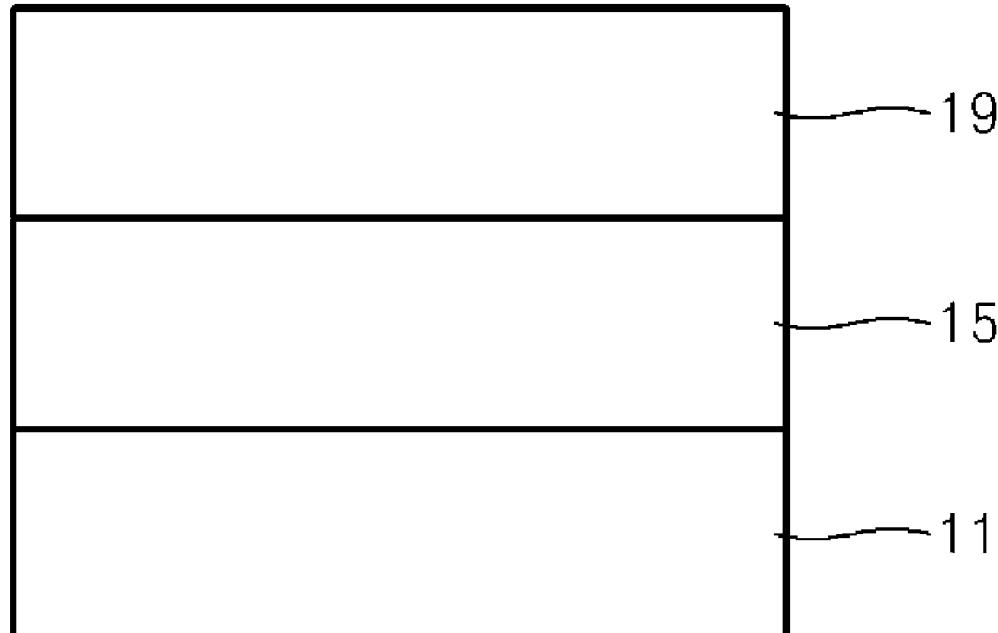
Foreign Application Priority Data

Mar. 13, 2015 (KR) 10-2015-0035156

Publication Classification


(51) **Int. Cl.**
H01L 51/00 (2006.01)
C07F 15/00 (2006.01)
C09K 11/06 (2006.01)

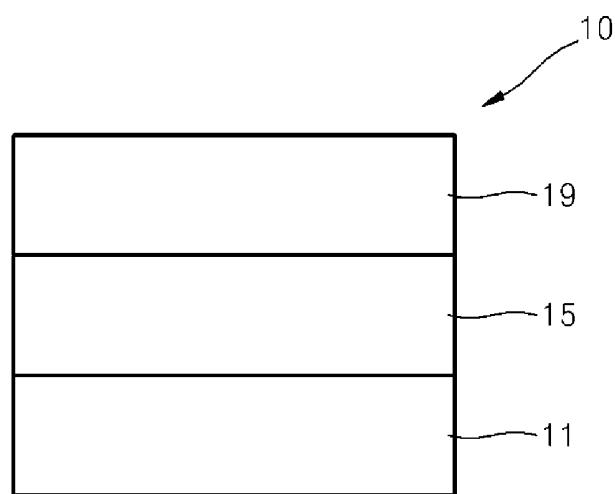
(52) **U.S. Cl.**
CPC *H01L 51/0094* (2013.01); *H01L 51/5016* (2013.01); *C09K 11/06* (2013.01); *C07F 15/0033* (2013.01)


ABSTRACT

An organometallic compound represented by Formula 1:

Formula 1

wherein in Formula 1, CY₁, R₁ to R₃, R₁₁ to R₁₃, R₂₁, and b1 are the same as described in the specification.


10

19

15

11

FIG. 1

**ORGANOMETALLIC COMPOUND AND
ORGANIC LIGHT-EMITTING DEVICE
INCLUDING THE SAME**

**CROSS-REFERENCE TO RELATED
APPLICATION**

[0001] This application is a continuation in part of U.S. application Ser. No. 15/066,451, filed on Mar. 10, 2016, which claims priority to and the benefit of Korean Patent Application No. 10-2015-0035156, filed on Mar. 13, 2015, in the Korean Intellectual Property Office, the contents of which are incorporated herein in their entirety by reference.

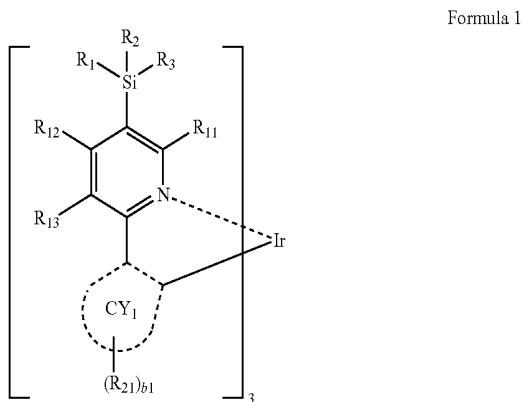
BACKGROUND

1. Field

[0002] One or more embodiments relate to an organometallic compound and an organic light-emitting device including the same.

2. Description of the Related Art

[0003] Organic light emitting devices (OLEDs) are self-emission devices that have wide viewing angles, high contrast ratios, and short response times. In addition, the OLEDs have good brightness, driving voltage, and response speed characteristics, and produce full-color images.


[0004] A typical organic light-emitting device includes an anode, a cathode, and an organic layer that is disposed between the anode and the cathode, wherein the organic layer includes an emission layer. A hole transport region may be disposed between the anode and the emission layer, and an electron transport region may be disposed between the emission layer and the cathode. Holes provided from the anode may move toward the emission layer through the hole transport region, and electrons provided from the cathode may move toward the emission layer through the electron transport region. The holes and the electrons are recombined in the emission layer to produce excitons. These excitons change from an excited state to a ground state, thereby generating light.

[0005] Various types of organic light emitting devices are known. However, there still remains a need in OLEDs having low driving voltage, high efficiency, high brightness, and long lifespan.

SUMMARY

[0006] One or more embodiments relate to a novel organometallic compound and an organic light-emitting device including the same.

[0007] According to an aspect, an organometallic compound represented by Formula 1 is provided:

[0008] wherein in Formula 1,

[0009] CY₁ is selected from a benzene ring and a naphthalene ring,

[0010] R₁ to R₃ are each independently selected from a hydrogen, a deuterium, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubstituted C₆-C₆₀ aryloxy group, a substituted or unsubstituted C₆-C₆₀ arylthio group, a substituted or unsubstituted C₇-C₆₀ arylalkyl group, a substituted or unsubstituted C₁-C₆₀ heteroaryl group, a substituted or unsubstituted C₂-C₆₀ heteroaryloxy group, a substituted or unsubstituted C₂-C₆₀ heteroarylthio group, a substituted or unsubstituted C₃-C₆₀ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q₅₁)(Q₅₂)(Q₅₃),

[0011] R₁₁ to R₁₃ and R₂₁ are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, —SF₅, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubstituted C₆-C₆₀ aryloxy group, a substituted or unsubstituted C₆-C₆₀ arylthio group, a substituted or unsubstituted C₇-C₆₀ arylalkyl group, a substituted or unsubstituted C₁-C₆₀ heteroaryl group, a substituted or unsubstituted C₂-C₆₀ heteroaryloxy group, a substituted or unsubstituted C₂-C₆₀ heteroarylthio group, a substituted or unsubstituted C₃-C₆₀ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q₅₁)(Q₅₂)(Q₅₃),

substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_1)(\text{Q}_2)$, $-\text{B}(\text{Q}_3)(\text{Q}_4)$, and $-\text{P}(\text{Q}_5)(\text{Q}_6)$,

[0012] when CY₁ is the benzene ring, b1 is an integer selected from 0 to 4,

[0013] when CY₁ is the naphthalene ring, b1 is an integer selected from 0 to 6,

[0014] at least one selected from R_{11} to R_{13} in Formula 1 is not a hydrogen, and

[0015] at least one of substituents of the substituted C_1 - C_{60} alkyl group, substituted C_2 - C_{60} alkenyl group, substituted C_2 - C_{60} alkynyl group, substituted C_1 - C_{60} alkoxy group, substituted C_3 - C_{10} cycloalkyl group, substituted C_1 - C_{10} heterocycloalkyl group, substituted C_3 - C_{10} cycloalkenyl group, substituted C_1 - C_{10} heterocycloalkenyl group, substituted C_6 - C_{60} aryl group, substituted C_6 - C_{60} aryloxy group, substituted C_6 - C_{60} arylthio group, substituted C_7 - C_{60} arylalkyl group, substituted C_1 - C_{60} heteroaryl group, substituted C_2 - C_{60} heteroaryloxy group, substituted C_2 - C_{60} heteroarylthio group, substituted C_3 - C_{60} heteroarylalkyl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:

[0016] a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, and a C₁-C₆₀ alkoxy group;

[0017] a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q₁₁)(Q₁₂), —B(Q₁₃)(Q₁₄), and —P(=O)(Q₁₅)(Q₁₆);

[0018] a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

[0019] a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroaryl-

alkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, a C₁-C₆₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₆₀ aryl group, a C₆-C₆₀ aryloxy group, a C₆-C₆₀ arylthio group, a C₇-C₆₀ arylalkyl group, a C₁-C₆₀ heteroaryl group, a C₂-C₆₀ heteroaryloxy group, a C₂-C₆₀ heteroarylthio group, a C₃-C₆₀ heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q₂₁)(Q₂₂), —B(Q₂₃)(Q₂₄), and —P(=O)(Q₂₅)(Q₂₆); and

[0020] —N(Q₃₁)(Q₃₂), —B(Q₃₃)(Q₃₄) and —P(=O)(Q₃₅)(Q₃₆);

[0021] wherein Q_1 to Q_6 , Q_{11} to Q_{16} , Q_{21} to Q_{26} , Q_{31} to Q_{36} and Q_{51} to Q_{53} are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C_1 - C_{60} alkyl group, a substituted or unsubstituted C_2 - C_{60} alkenyl group, a substituted or unsubstituted C_2 - C_{60} alkynyl group, a substituted or unsubstituted C_1 - C_{60} alkoxy group, a substituted or unsubstituted C_3 - C_{10} cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C_3 - C_{10} cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C_6 - C_{60} aryl group, a substituted or unsubstituted C_6 - C_{60} aryloxy group, a substituted or unsubstituted C_6 - C_{60} arylthio group, a substituted or unsubstituted C_7 - C_{60} arylalkyl group, a substituted or unsubstituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted C_2 - C_{60} heteroaryloxy group, a substituted or unsubstituted C_2 - C_{60} heteroarylthio group, a substituted or unsubstituted C_3 - C_{60} heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

[0022] According to another aspect, provided is an organic light-emitting device including:

[0023] a first electrode;

[0024] a second electrode; and

[0025] an organic layer disposed between the first electrode and the second electrode,

[0026] wherein the organic layer includes an emission layer, and at least one organometallic compound represented by Formula 1.

[0027] The emission layer may include the at least one organometallic compound.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] These and/or other aspects will become apparent and more readily appreciated from the following description

of the embodiments, taken in conjunction with FIG. 1, which is a schematic view of an organic light-emitting device according to an embodiment.

DETAILED DESCRIPTION

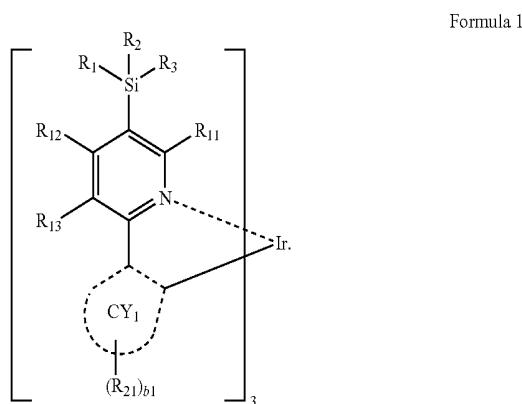
[0029] Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the FIGURES, to explain aspects of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.

[0030] It will be understood that when an element is referred to as being “on” another element, it can be directly in contact with the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.

[0031] It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments.

[0032] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.

[0033] The term “or” means “and/or.” It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.


[0034] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this general inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

[0035] Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not

be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.

[0036] “About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within $\pm 30\%$, 20% , 10% , 5% of the stated value.

[0037] An organometallic compound according to an exemplary embodiment is represented by Formula 1:

[0038] CY₁ in Formula 1 may be selected from a benzene and a naphthalene.

[0039] R₁ to R₃ in Formula 1 may be each independently selected from a hydrogen, a deuterium, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubstituted C₆-C₆₀ aryloxy group, a substituted or unsubstituted C₆-C₆₀ arylthio group, a substituted or unsubstituted C₇-C₆₀ arylalkyl group, a substituted or unsubstituted C₁-C₆₀ heteroaryl group, a substituted or unsubstituted C₂-C₆₀ heteroaryloxy group, a substituted or unsubstituted C₂-C₆₀ heteroarylthio group, a substituted or unsubstituted C₃-C₆₀ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q₅₁)(Q₅₂)(Q₅₃).

[0040] In some embodiments, R₁ to R₃ in Formula 1 may be each independently selected from

[0041] a hydrogen, a deuterium, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, and $-\text{Si}(Q_{51})(Q_{52})(Q_{53})$,

[0042] a C_1 - C_{20} alkyl group and a C_1 - C_{20} alkoxy group, each substituted with at least one selected from a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{10} alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

[0043] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

[0044] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an

amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, and Q_{51} to Q_{53} may be each independently selected from

[0045] a hydrogen, a deuterium, $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CD}_2\text{H}$, $-\text{CH}_2\text{CDH}_2$, $-\text{CH}_2\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CH}_2\text{CD}_2\text{H}$, $-\text{CH}_2\text{CH}_2\text{CDH}_2$, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CD}_2\text{H}$, and $-\text{CH}_2\text{CH}_2\text{CDH}_2$;

[0046] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0047] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C_1 - C_{10} alkyl group, and a phenyl group.

[0048] In some embodiments, R_1 to R_3 in Formula 1 may be each independently selected from

[0049] a hydrogen, a deuterium, $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CD}_2\text{H}$, $-\text{CH}_2\text{CDH}_2$, $-\text{CH}_2\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CH}_2\text{CD}_2\text{H}$, $-\text{CH}_2\text{CH}_2\text{CDH}_2$, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CD}_2\text{H}$, and $-\text{CH}_2\text{CH}_2\text{CDH}_2$;

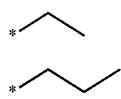
[0050] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, and $-\text{Si}(Q_{51})(Q_{52})(Q_{53})$; and

[0051] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C_1 - C_{10} alkyl group, and a phenyl group,

[0052] wherein Q_{51} to Q_{53} may be each independently selected from

[0053] a hydrogen, a deuterium, $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CD}_2\text{H}$,

—CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHDCDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;


[0054] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0055] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group.

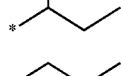

[0056] In some embodiments, R₁ to R₃ in Formula 1 may be each independently selected from a hydrogen, a deuterium, —CH₃, —CH₂CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CD₃, and —CD₂CH₃.

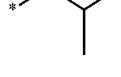
[0057] In some embodiments, R₁ to R₃ in Formula 1 may be each independently selected from —CH₃, —CH₂CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CD₃, and —CD₂CH₃.

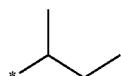
[0058] In some embodiments, R₁ to R₃ in Formula 1 may be each independently selected from a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, groups represented by Formulae 9-1 to 9-19, and groups represented by Formulae 10-1 to 10-18:

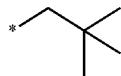
Formula 9-1

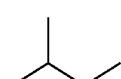
Formula 9-2

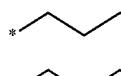

Formula 9-3


Formula 9-4

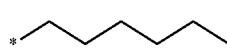

Formula 9-5


Formula 9-6

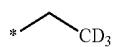

Formula 9-7


Formula 9-8

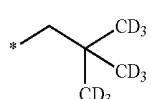
Formula 9-9

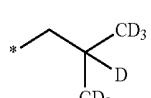


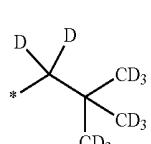
Formula 9-10

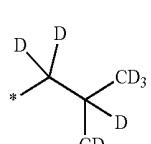


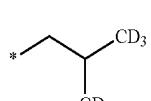
Formula 9-11

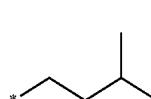

-continued

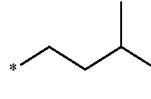

Formula 9-12

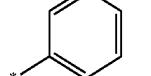

Formula 9-13

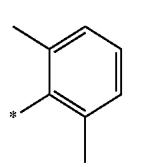

Formula 9-14

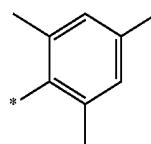

Formula 9-15


Formula 9-16


Formula 9-17

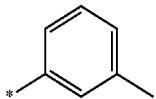

Formula 9-18


Formula 9-19

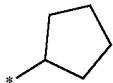

Formula 10-1


Formula 10-2

Formula 10-3

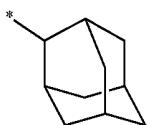


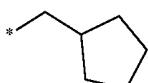
Formula 10-4

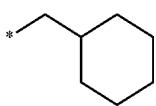


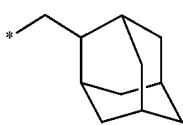
Formula 10-5

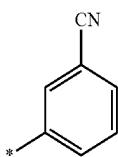
-continued

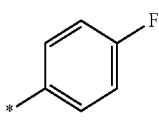

Formula 10-6

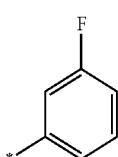

Formula 10-7

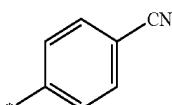

Formula 10-8

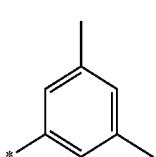

Formula 10-9


Formula 10-10

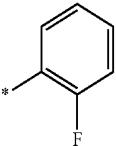

Formula 10-11


Formula 10-12


Formula 10-13


Formula 10-14

Formula 10-15



Formula 10-16

Formula 10-17

-continued

Formula 10-18

[0059] * in Formulae 9-1 to 9-19 and 10-1 to 10-18 is a binding site to a neighboring atom. In some embodiments, R_1 to R_3 in Formula 1 may be each independently selected from $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, groups represented by Formulae 9-1 to 9-19, and a phenyl group, but it may be considered that they are not limited thereto.

[0060] In Formula 1,

[0061] R_1 to R_3 may all be identical to each other;

[0062] R_1 and R_3 may be identical to each other and R_2 and R_1 may be different from each other; or

[0063] R_1 to R_3 may all be different from each other.

[0064] In some embodiments, R_1 to R_3 in Formula 1 may all be identical to each other.

[0065] For example, in Formula 1,

[0066] R_1 to R_3 may all be identical to each other, and

[0067] R_1 to R_3 may be selected from $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, groups represented by Formulae 9-1 to 9-19, and a phenyl group, but it may be considered that they are not limited thereto.

[0068] R_{11} to R_{13} and R_{21} in Formula 1 may be each independently selected from a hydrogen, a cyano group, a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{SF}_5$, a hydroxyl group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted $\text{C}_1\text{-C}_{60}$ alkyl group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ alkenyl group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ alkynyl group, a substituted or unsubstituted $\text{C}_1\text{-C}_{60}$ alkoxy group, a substituted or unsubstituted $\text{C}_3\text{-C}_{10}$ cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted $\text{C}_3\text{-C}_{10}$ cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted $\text{C}_6\text{-C}_{60}$ aryl group, a substituted or unsubstituted $\text{C}_6\text{-C}_{60}$ aryloxy group, a substituted or unsubstituted $\text{C}_6\text{-C}_{60}$ arylthio group, a substituted or unsubstituted $\text{C}_7\text{-C}_{60}$ arylalkyl group, a substituted or unsubstituted $\text{C}_1\text{-C}_{60}$ heteroaryl group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ heteroaryloxy group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ heteroarylthio group, a substituted or unsubstituted $\text{C}_3\text{-C}_{60}$ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_1)(\text{Q}_2)$, $-\text{B}(\text{Q}_3)(\text{Q}_4)$, and $-\text{P}(\text{=O})(\text{Q}_5)(\text{Q}_6)$, provided that at least one selected from R_{11} to R_{13} in Formula 1 may not be a hydrogen.

[0069] In some embodiments, R_{11} to R_{13} and R_{21} in Formula 1 may be each independently selected from

[0070] a hydrogen, a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic

acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF₅, C₁-C₂₀ alkyl group, and a C₁-C₂₀ alkoxy group;

[0071] a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

[0072] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

[0073] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl

group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

[0074] —B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

[0075] wherein Q₃ to Q₆ may be each independently selected from

[0076] a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHDCDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;

[0077] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0078] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group, provided that at least one selected from R₁₁ to R₁₃ in Formula 1 is not a hydrogen.

[0079] In some embodiments, R₁₁ to R₁₃ and R₂₁ in Formula 1 may be each independently selected from

[0080] a hydrogen, a deuterium, —F, a cyano group, a nitro group, —SF₅, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an iso-decyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl

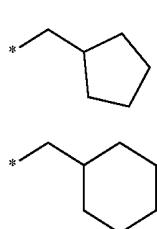
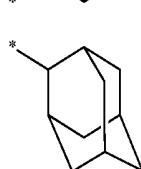
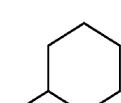
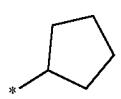
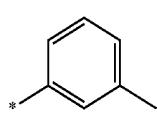
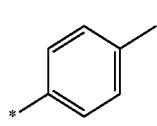
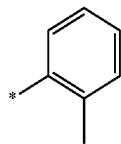
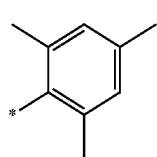
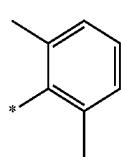
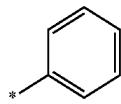
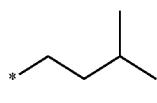
group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;

[0081] a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a deuterium, —F, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a cyano group, a nitro group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and

[0082] —B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),


[0083] wherein Q₃ to Q₆ may be each independently selected from

[0084] a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHDCDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;












[0085] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0086] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group, provided that at least one selected from R₁₁ to R₁₃ in Formula 1 may not be a hydrogen.

[0087] In some embodiments, R₁₁ to R₁₃ and R₂₁ in Formula 1 may be each independently selected from a hydrogen, a deuterium, —F, a cyano group, a nitro group, —SF₅, —CH₃, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, groups represented by Formulae 9-1 to 9-19, and groups represented by Formulae 10-1 to 10-36, provided that at least one selected from R₁₁ to R₁₃ in Formula 1 is not a hydrogen:

-continued

Formula 9-18

Formula 9-19

Formula 10-1

Formula 10-2

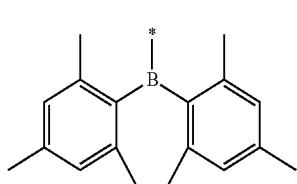
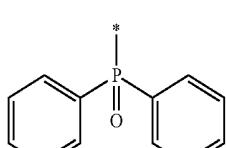
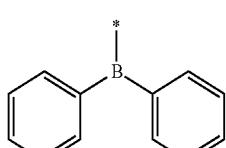
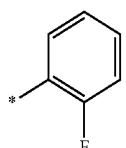
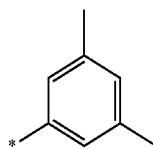
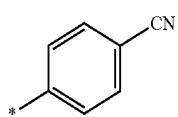
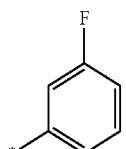
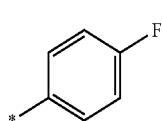
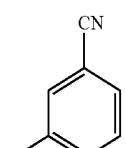
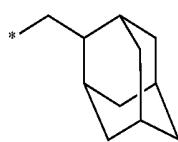
Formula 10-3

Formula 10-4

Formula 10-5

Formula 10-6

Formula 10-7











Formula 10-8

Formula 10-9

Formula 10-10

Formula 10-11

-continued

Formula 10-12

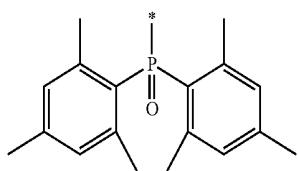
Formula 10-13

Formula 10-14

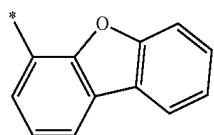
Formula 10-15

Formula 10-16

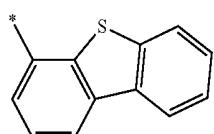
Formula 10-17

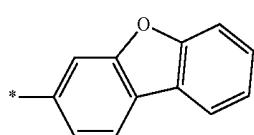

Formula 10-18

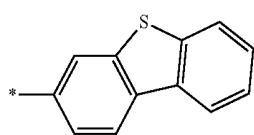
Formula 10-19

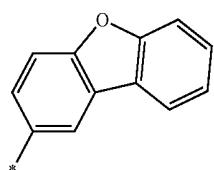

Formula 10-20

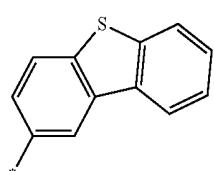
Formula 10-21

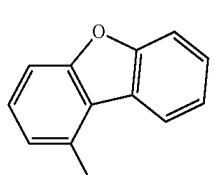

-continued

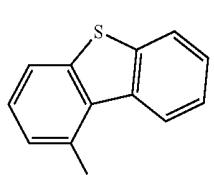

Formula 10-22


Formula 10-23

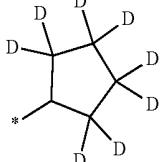

Formula 10-24


Formula 10-25


Formula 10-26

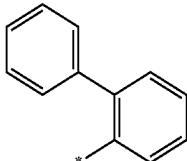

Formula 10-27

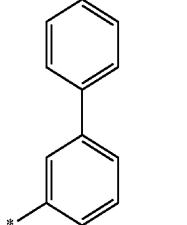
Formula 10-28

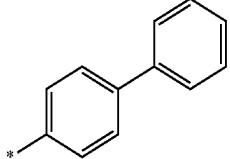

Formula 10-29

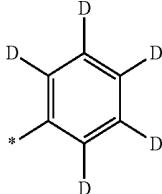

Formula 10-30

-continued


Formula 10-31


Formula 10-32


Formula 10-33


Formula 10-34

Formula 10-35

Formula 10-36

[0088] wherein * in Formulae 9-1 to 9-19 and 10-1 to 10-36 is a binding site to a neighboring atom.

[0089] b_1 in Formula 1 indicates the number of groups R_{21} . When CY_1 is the benzene, b_1 may be an integer selected from 0 to 4. When CY_1 is the naphthalene, b_1 may be an integer selected from 0 to 6. When b_1 is 2 or more, 2 or more groups R_{21} may be identical to or different from each other. For example, b_1 may be 0, 1, or 2. In some embodiments, b_1 may be 1. In other embodiments, b_1 in Formula 1 may be 0, but it may be considered that they are not limited thereto.

[0090] In Formula 1,

[0091] R_{11} may not be a hydrogen and R_{12} and R_{13} may each be a hydrogen;

[0092] R_{12} may not be a hydrogen and R_{11} and R_{13} may each be a hydrogen;

[0093] R_{13} may not be a hydrogen and R_{11} and R_{12} may each be a hydrogen;

[0094] each of R_{11} and R_{12} may not be a hydrogen and R_{13} may be a hydrogen;

[0095] each of R_{12} and R_{13} may not be a hydrogen and R_{11} may be a hydrogen;

[0096] each of R_{11} and R_{13} may not be a hydrogen and R_{12} may be a hydrogen; or

[0097] each of R_{11} to R_{13} may not be a hydrogen at the same time.

[0098] In some embodiments, R_{11} in Formula 1 may not be a hydrogen.

[0099] In some embodiments, R_{11} in Formula 1 may be neither a hydrogen nor a methyl group.

[0100] In some embodiments, in Formula 1,

[0101] R_{11} may not be a hydrogen and R_{12} and R_{13} may each be a hydrogen; or

[0102] R_{12} may not be a hydrogen and R_{11} and R_{13} may be a hydrogen.

[0103] For example, R_{12} in Formula 1 may be a deuterium, —F, —Cl, —Br, —I, —SF₅, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C₁-C₂₀ alkyl group, a substituted or unsubstituted C₁-C₂₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C₆-C₂₀ aryl group, a substituted or unsubstituted C₁-C₂₀ heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —B(Q₃)(Q₄), and —P(=O)(Q₅)(Q₆).

[0104] In some embodiments, R_{12} in Formula 1 may be selected from

[0105] a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, —SF₅, C₁-C₂₀ alkyl group, and a C₁-C₂₀ alkoxy group;

[0106] a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

[0107] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group,

a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

[0108] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.

triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

[0109] —B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),
 [0110] wherein Q₃ to Q₆ are each independently selected from

[0111] a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHDCDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;

[0112] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0113] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group.

[0114] In some embodiments, R₁₂ in Formula 1 may be a substituted or unsubstituted C₁-C₂₀ alkyl group.

[0115] In some embodiments, R₁₂ in Formula 1 may be selected from

[0116] a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group; and

[0117] a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

[0118] In some embodiments, R₁₂ in Formula 1 may be selected from

[0119] a C₂-C₂₀ alkyl group and a C₂-C₂₀ alkoxy group;

[0120] a methyl group and a methoxy group, each substituted with at least one selected from C₃-C₆₀ cycloalkyl group, a C₁-C₆₀ heterocycloalkyl group, a C₃-C₆₀ cycloalkenyl group, a C₁-C₆₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

[0121] a C₂-C₂₀ alkyl group and a C₂-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed heteropolycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

[0122] a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

[0123] a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

[0124] —B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

[0125] wherein Q₃ to Q₆ may be each independently selected from a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₆-C₁₄ aryl group substituted with at least one selected from a C₁-C₂₀ alkyl group and a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.

[0126] In some embodiments, R₁₂ in Formula 1 may be selected from

[0127] a C₂-C₂₀ alkyl group and a C₂-C₂₀ alkoxy group;

[0128] a methyl group and a methoxy group, each substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

[0129] a C₂-C₂₀ alkyl group and a C₂-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

[0130] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenan-

threnyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

[0131] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

[0132] —B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

[0133] wherein Q₃ to Q₆ may be each independently selected from

[0134] a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHDCDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;

[0135] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0136] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group.

[0137] In some embodiments, R₁₂ in Formula 1 may be selected from

[0138] an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

[0139] a methyl group and a methoxy group, each substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and

[0140] an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group,

an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a cyano group, a nitro group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

[0141] In some embodiments, R₁₂ in Formula 1 may be selected from

[0142] a C₂-C₂₀ alkyl group;

[0143] a methyl group, each substituted with at least one selected from a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group; and

[0144] a C₂-C₂₀ alkyl group, substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₁₄ aryl group, a C₁-C₁₄ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.

[0145] In some embodiments, R₁₂ in Formula 1 may be selected from

[0146] a C₂-C₂₀ alkyl group;

[0147] a methyl group, substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and

[0148] a C₂-C₂₀ alkyl group, substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, but is not limited thereto.

[0149] In some embodiments, R₁₂ in Formula 1 may be selected from

[0150] an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl

group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group;

[0151] a methyl group, substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and

[0152] an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group, each substituted with at least one selected from a deuterium, —F, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a cyano group, a nitro group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

[0153] R₁₃ in Formula 1 may be selected from

[0154] a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, —SF₅, a C₁-C₂₀ alkyl group, and a C₁-C₂₀ alkoxy group;

[0155] a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

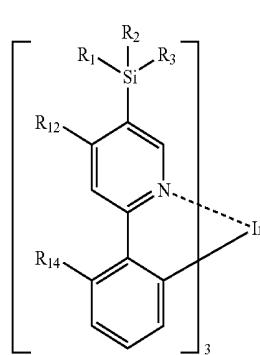
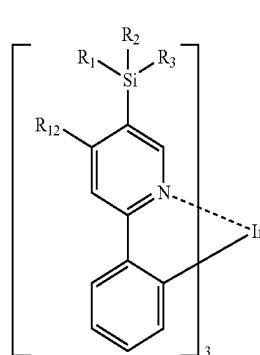
[0156] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chryslenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group,

a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

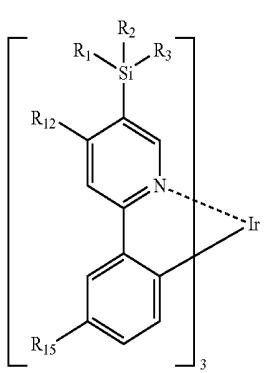
[0157] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

nyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

[0158] —B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

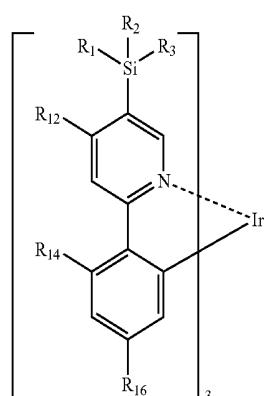


[0159] wherein Q₃ to Q₆ may be each independently selected from

[0160] a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHCDH₃, —CHCD₂H, —CHDCDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H and —CD₂CDH₂;

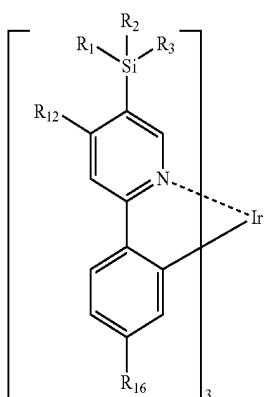

[0161] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

[0162] an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group, but is not limited thereto.

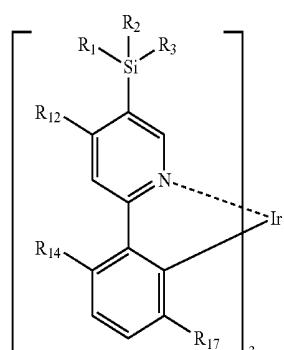
[0163] For example, the organometallic compound may be represented by one of Formulae 1-1 to 1-108:

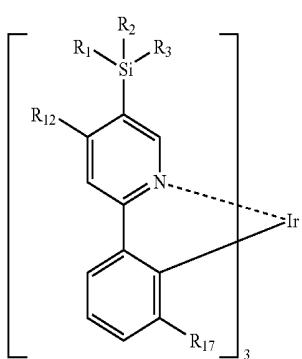


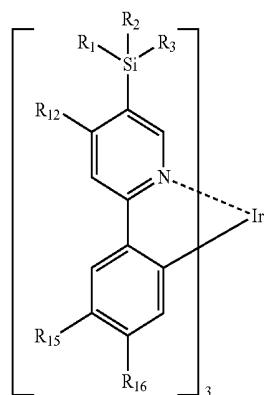
-continued

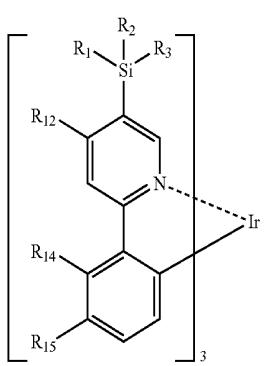


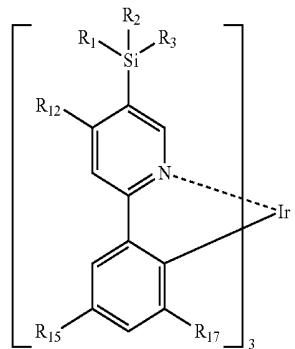
Formula 1-3


-continued

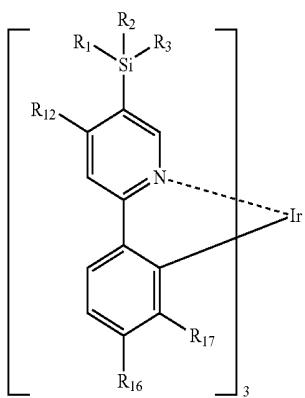

Formula 1-7


Formula 1-4

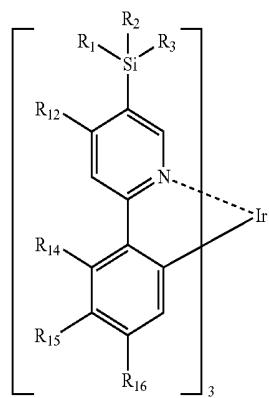

Formula 1-8


Formula 1-5

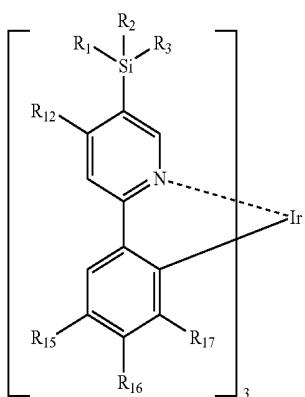
Formula 1-9



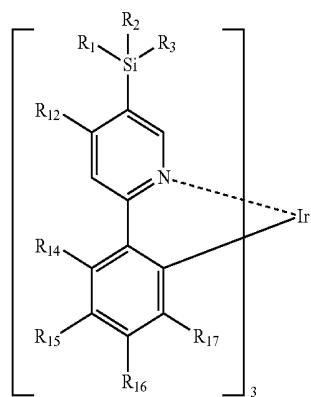
Formula 1-6

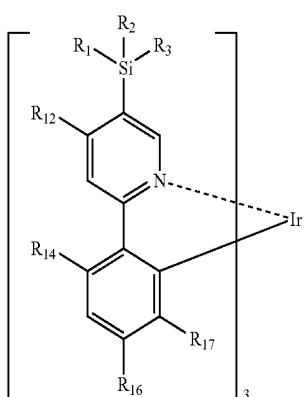

Formula 1-10

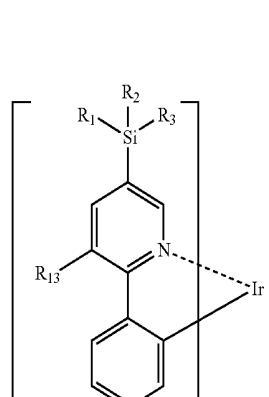
-continued

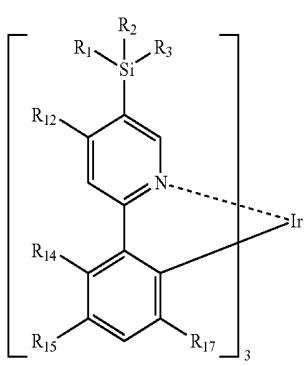


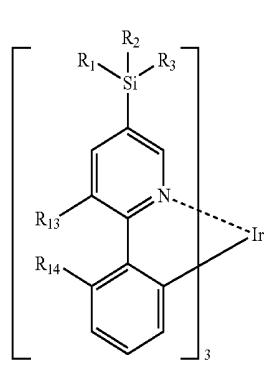
Formula 1-11


-continued

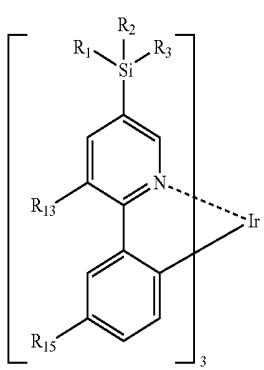

Formula 1-15


Formula 1-12

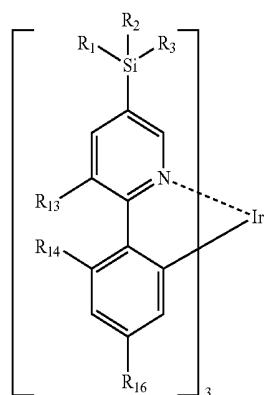

Formula 1-16


Formula 1-13

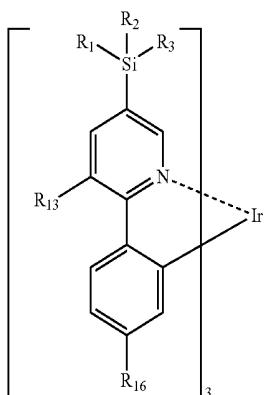
Formula 1-17



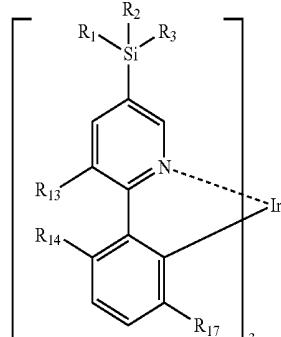
Formula 1-14


Formula 1-18

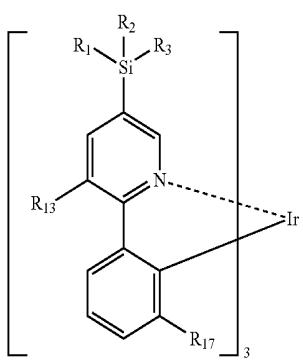
-continued

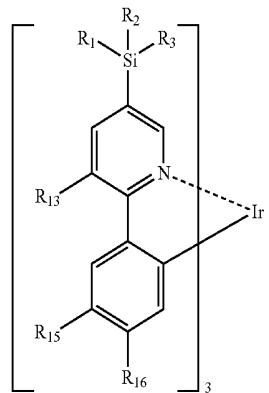

Formula 1-19

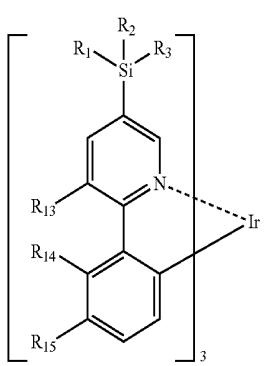
-continued

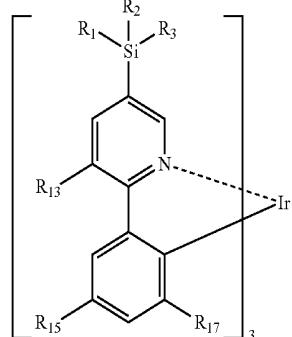


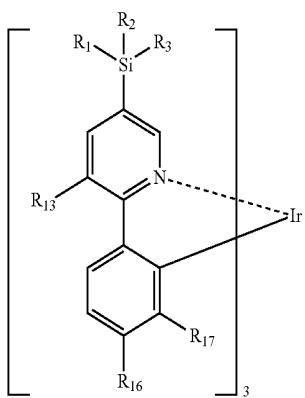
Formula 1-23


Formula 1-20

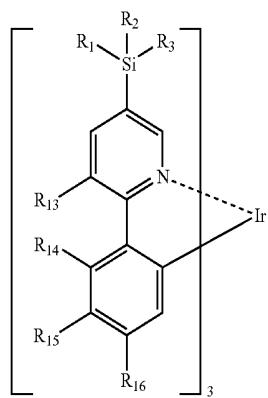

Formula 1-24


Formula 1-21

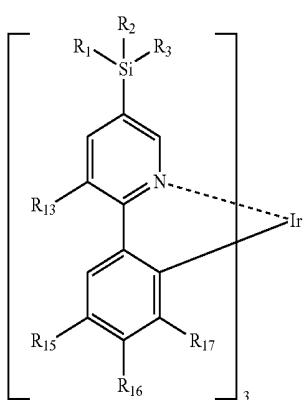

Formula 1-25


Formula 1-22

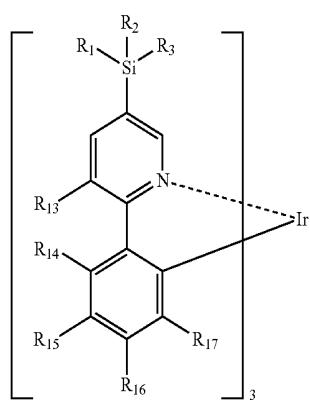
Formula 1-26



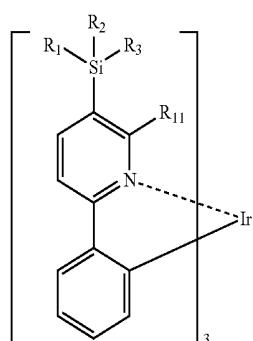
-continued

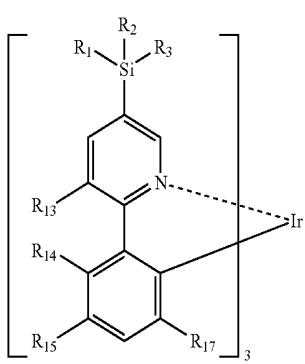


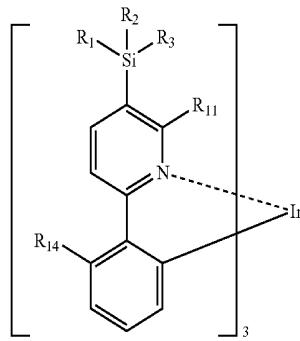
Formula 1-27


-continued

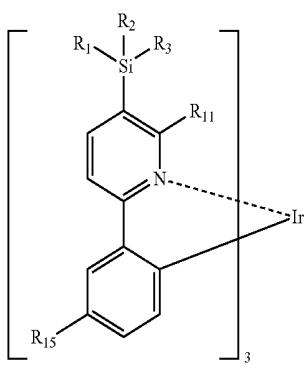
Formula 1-31


Formula 1-28

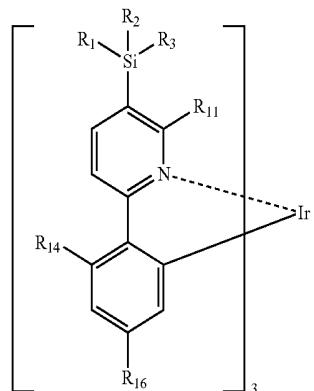

Formula 1-32


Formula 1-29

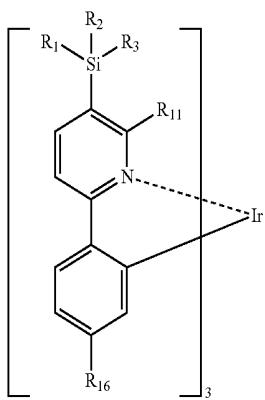
Formula 1-33



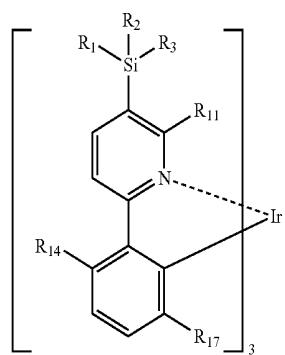
Formula 1-30


Formula 1-34

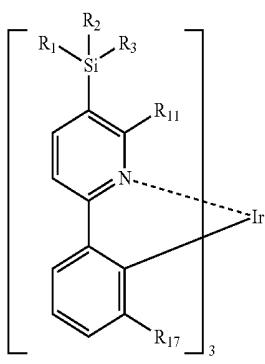
-continued

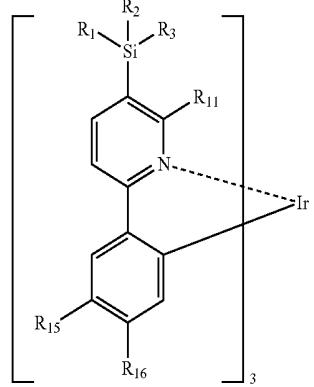

Formula 1-35

-continued

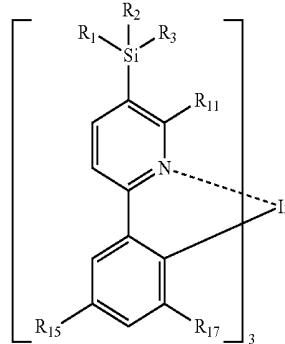
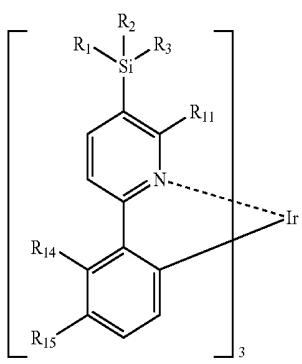


Formula 1-39

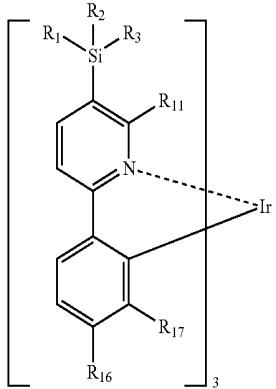

Formula 1-36


Formula 1-40

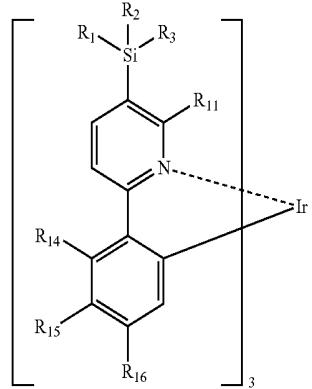
Formula 1-37

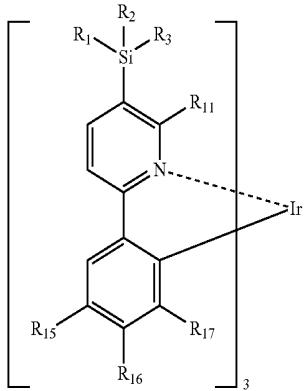
Formula 1-41


Formula 1-38

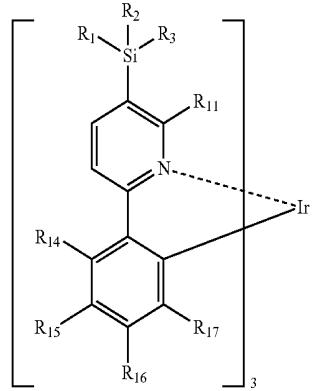
Formula 1-42

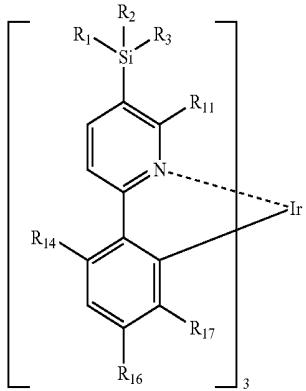

-continued

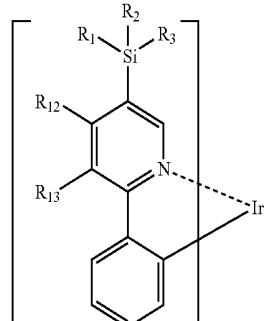
Formula 1-43

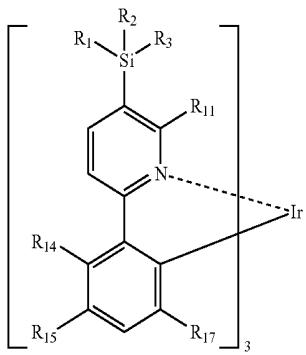


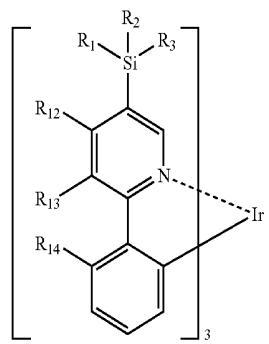
-continued

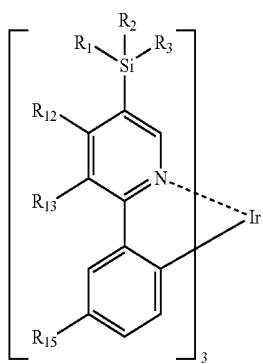

Formula 1-47


Formula 1-44

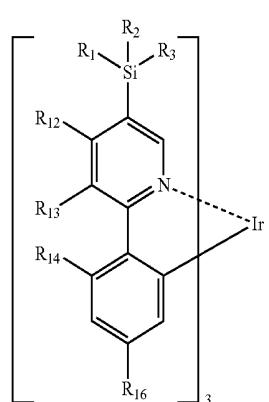

Formula 1-48


Formula 1-45

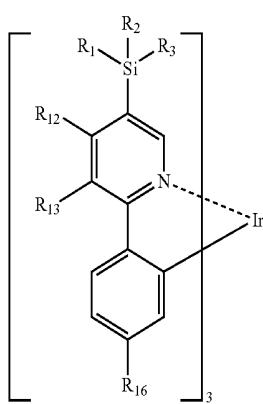

Formula 1-49


Formula 1-46

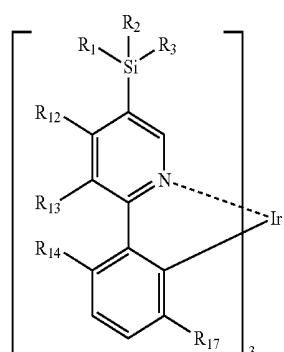
Formula 1-50

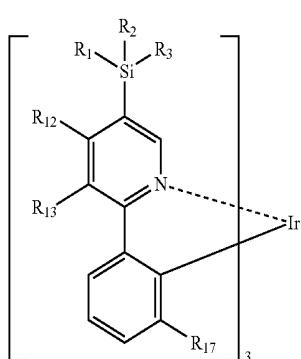


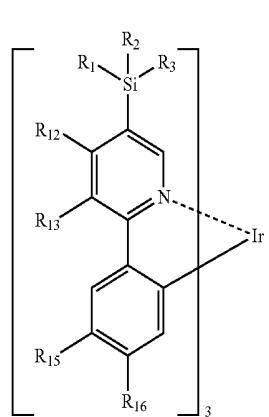
-continued

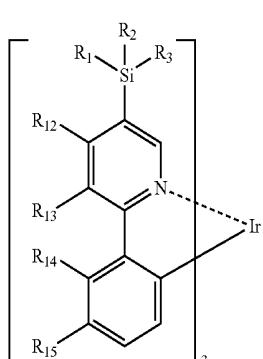


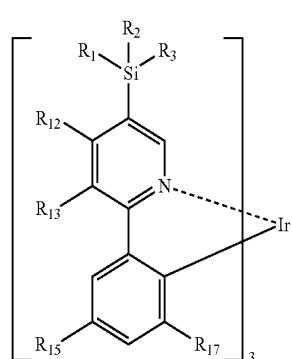
Formula 1-51


-continued

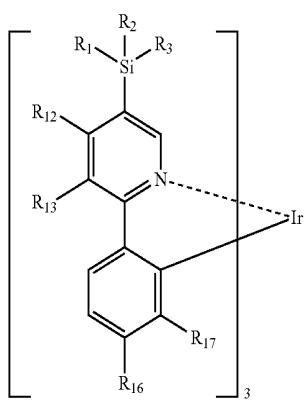

Formula 1-55


Formula 1-52

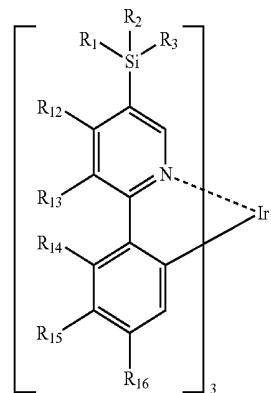

Formula 1-56


Formula 1-53

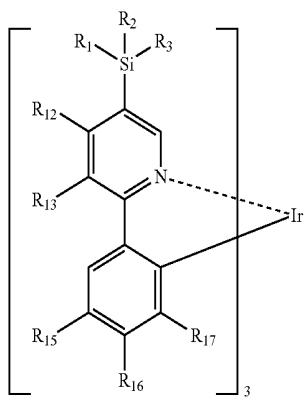
Formula 1-57



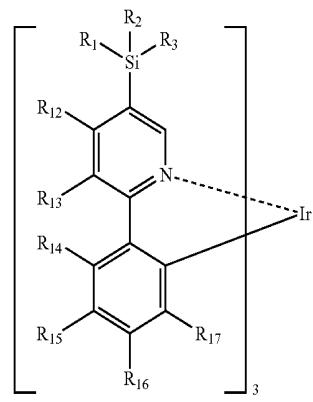
Formula 1-54

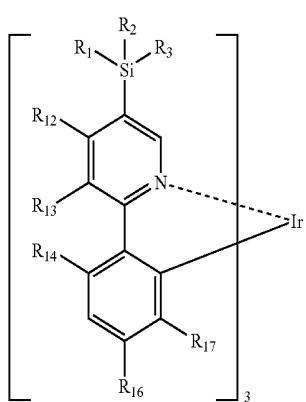

Formula 1-58

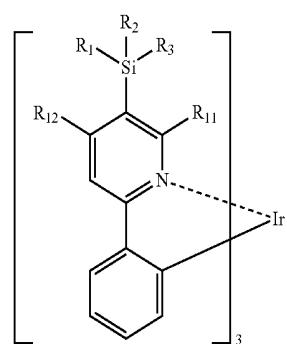
-continued

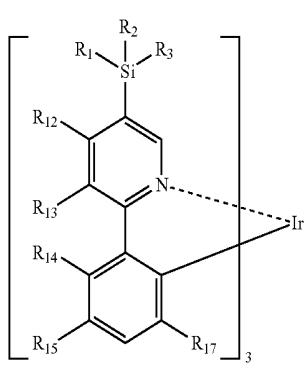


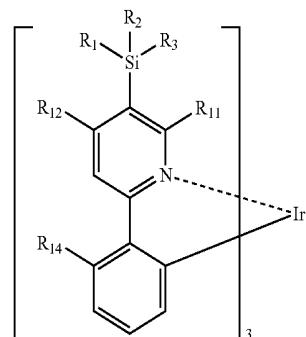
Formula 1-59


-continued

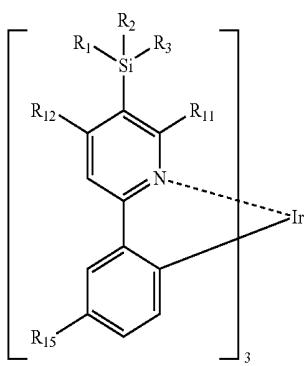

Formula 1-63


Formula 1-60

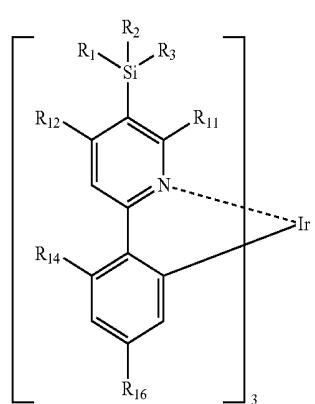

Formula 1-64


Formula 1-61

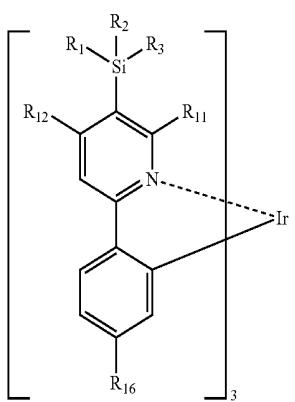
Formula 1-65



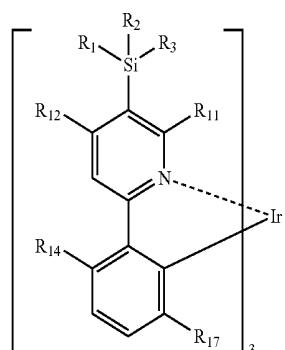
Formula 1-62


Formula 1-66

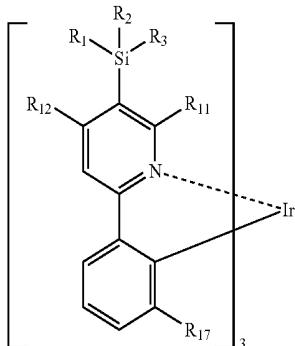
-continued

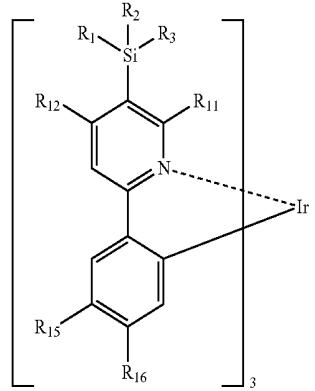

Formula 1-67

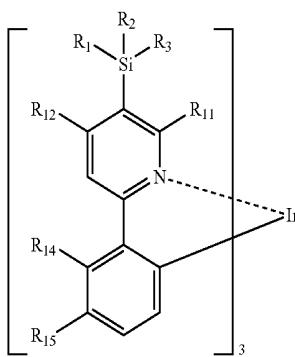
-continued

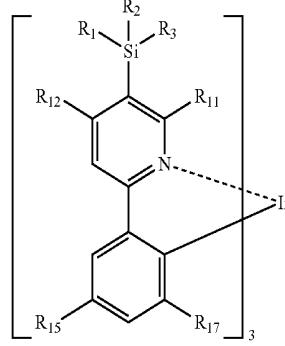


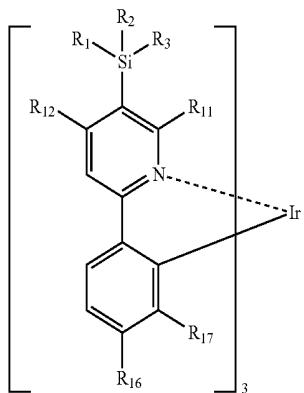
Formula 1-71


Formula 1-68

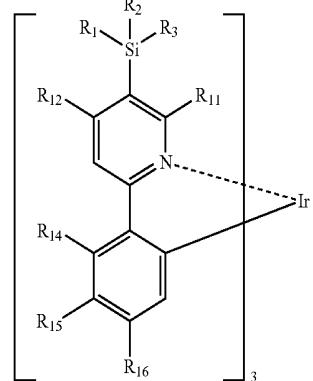

Formula 1-72


Formula 1-69

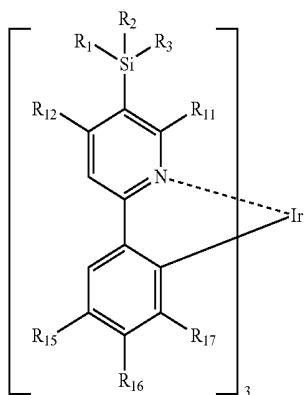

Formula 1-73


Formula 1-70

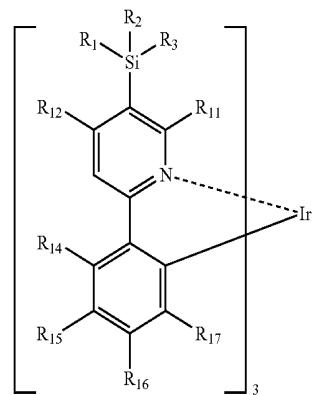
Formula 1-74

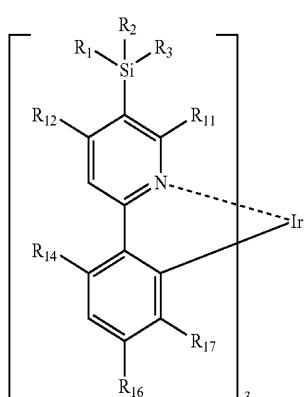


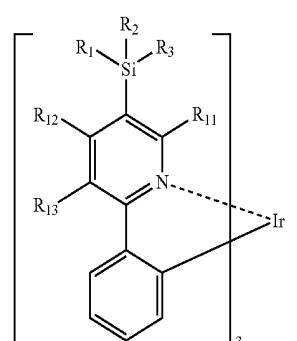
-continued



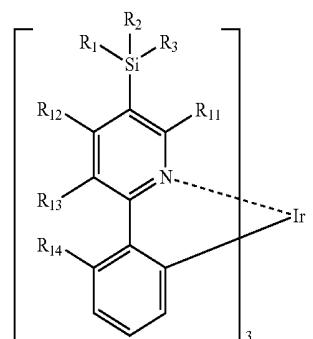
Formula 1-75


-continued

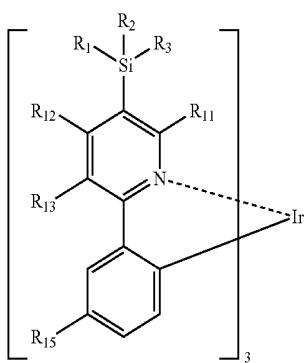

Formula 1-79


Formula 1-76


Formula 1-80


Formula 1-77

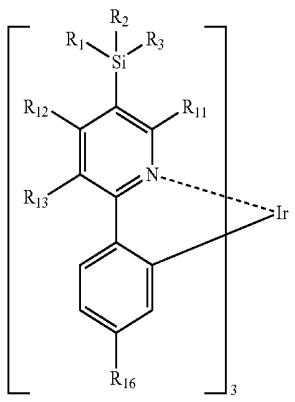
Formula 1-81



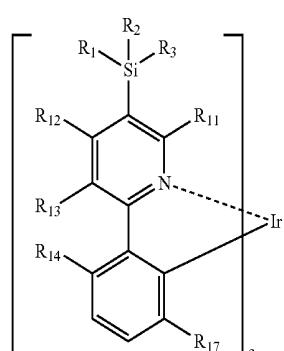
Formula 1-78

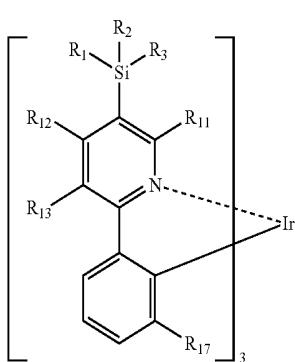
Formula 1-82

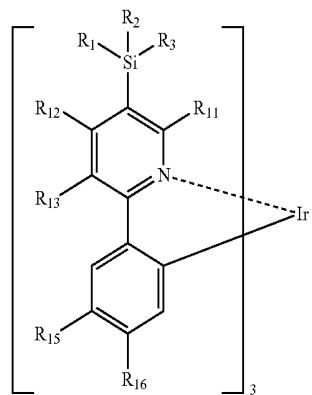
-continued

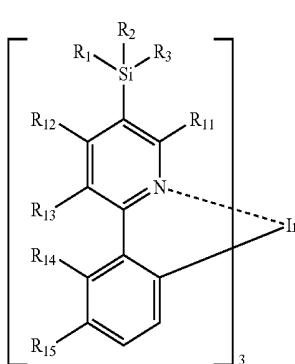


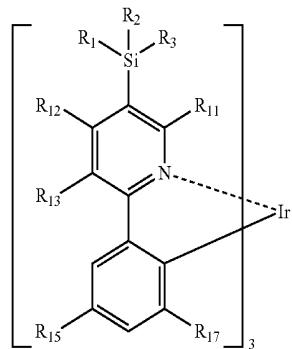
Formula 1-83


-continued

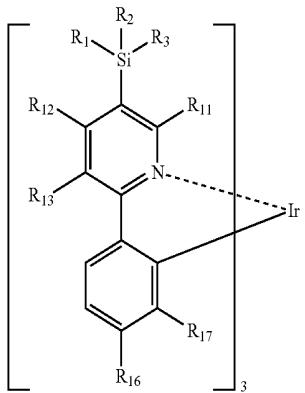

Formula 1-87


Formula 1-84

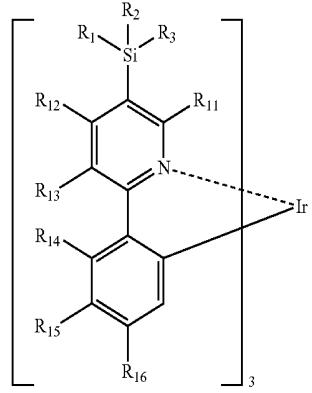

Formula 1-88


Formula 1-85

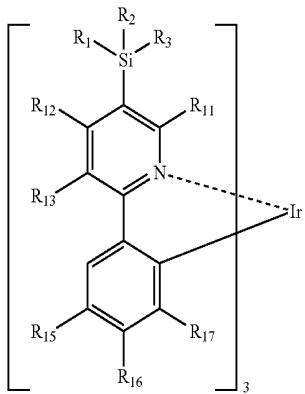
Formula 1-89



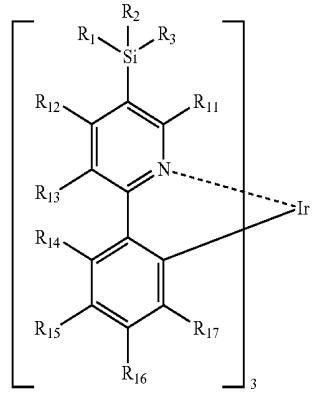
Formula 1-86

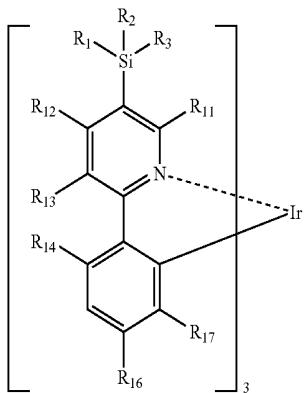

Formula 1-90

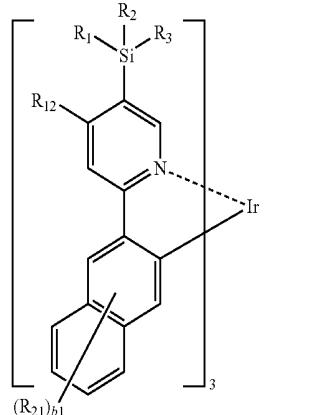
-continued

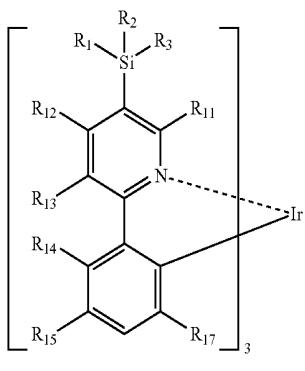


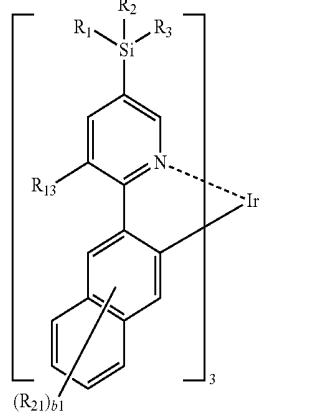
Formula 1-91


-continued

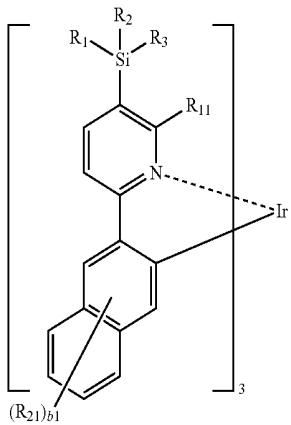

Formula 1-95


Formula 1-92

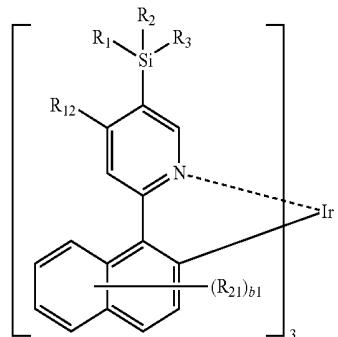

Formula 1-96


Formula 1-93

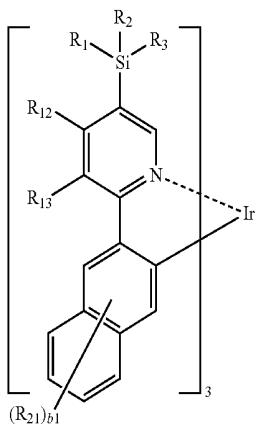
Formula 1-97


Formula 1-94

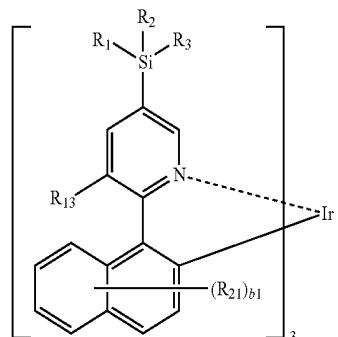
Formula 1-98

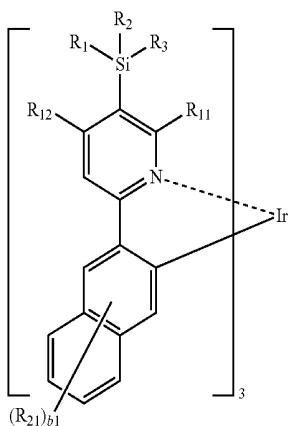

-continued

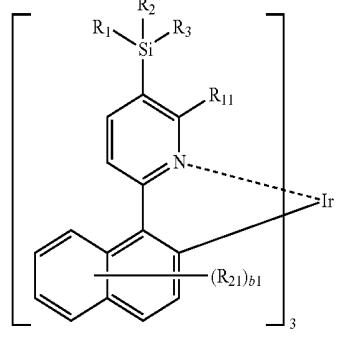
Formula 1-99

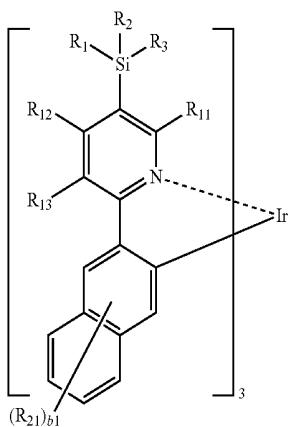


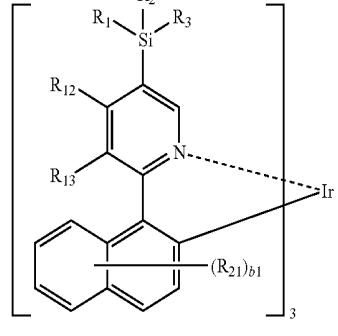
-continued


Formula 1-103

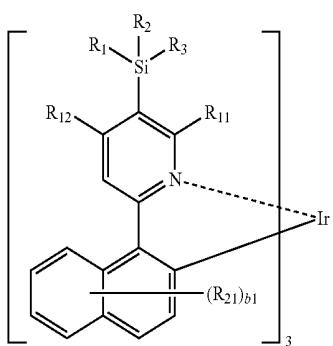

Formula 1-100


Formula 1-104

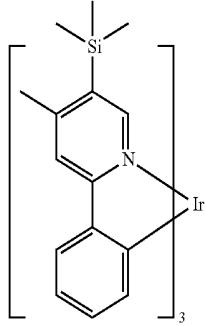

Formula 1-101


Formula 1-105

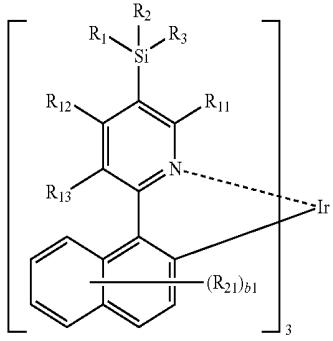
Formula 1-102

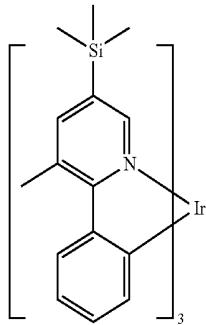


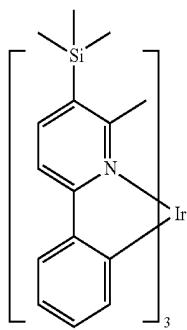
Formula 1-106



-continued


[0171] For example, the organometallic compound may be one of Compounds 1 to 168, but is not limited thereto:


Formula 1-107


1

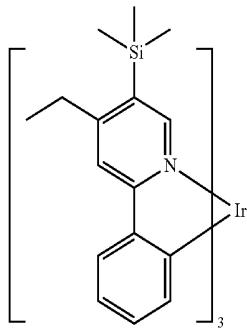
Formula 1-108

2

3

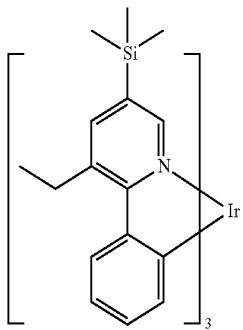
[0164] In Formulae 1-1 to 1-108, descriptions of R_1 to R_3 and R_{11} to R_{13} are the same as described above, descriptions of R_{14} to R_{17} may be understood by referring to descriptions of R_{21} , and descriptions of b_1 are the same as described above, provided that each of R_{17} may not be a hydrogen.

[0165] For example, in Formulae 1-1 to 1-108,

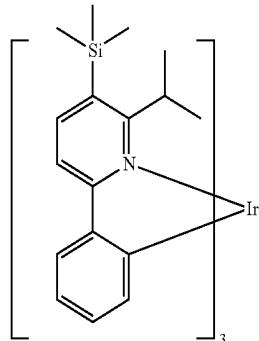

[0166] R_1 to R_3 may all be identical to each other,

[0167] R₁ to R₃ may be selected from —CH₃, —CD₃, —CD₂H, —CDH₂, groups represented by Formulae 9-1 to 9-19, and a phenyl group,

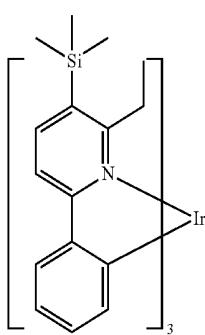
[0168] R_{11} to R_{17} and R_{21} may be each independently selected from a deuterium, —F, a cyano group, a nitro group, —SF₅, —CH₃, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, groups represented by Formulae 9-1 to 9-19, and groups represented by Formulae 10-1 to 10-36,


[0169] b1 may be 0, 1, or 2, but is not limited thereto.

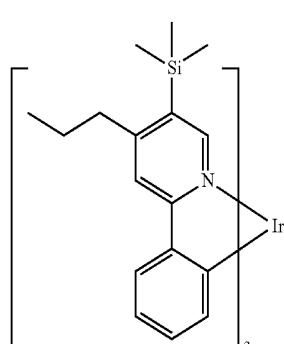
[0170] In some embodiments, the organometallic compound may be represented by one of Formulae 1-1 to 1-48, 1-97 to 1-99 and 1-103 to 1-105, provided that b_1 in Formulae 1-97 to 1-99 and 1-103 to 1-105 is 0.

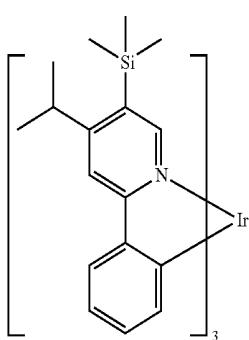

4

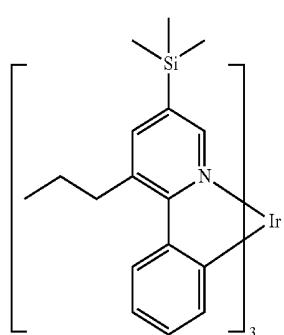
-continued

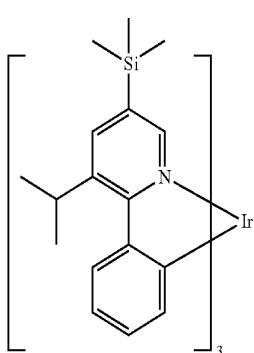


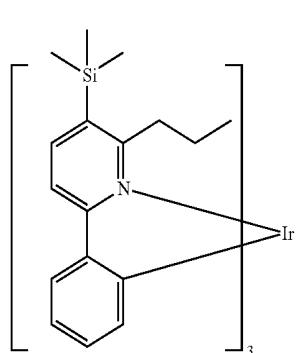
5


-continued

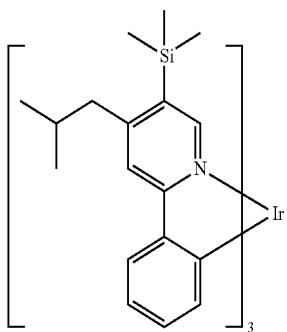

9


6

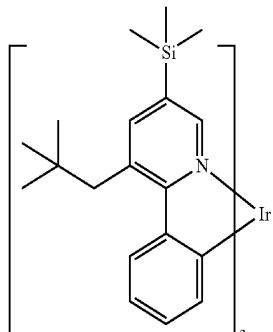

10


7

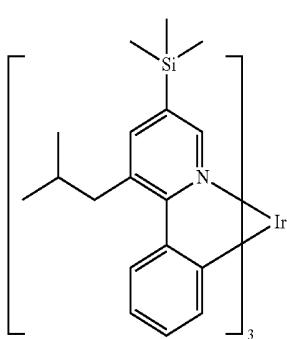
11



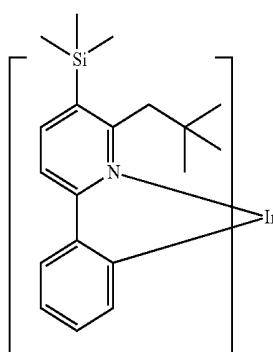
8


12

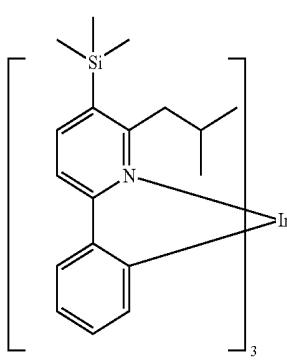
-continued

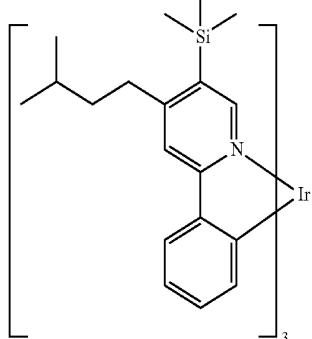

13

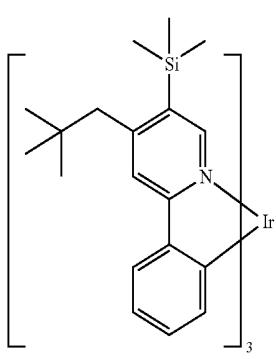
-continued

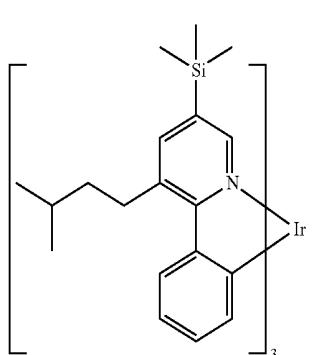


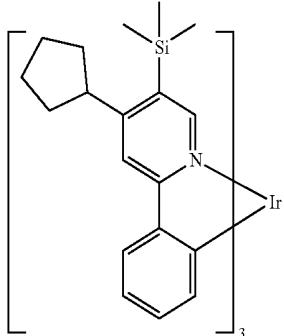
17


14

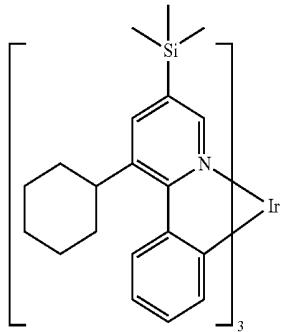

18


15

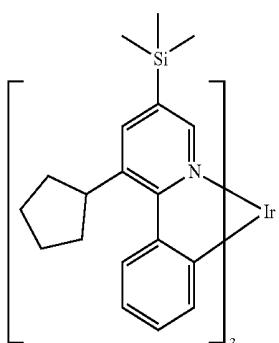

19


16

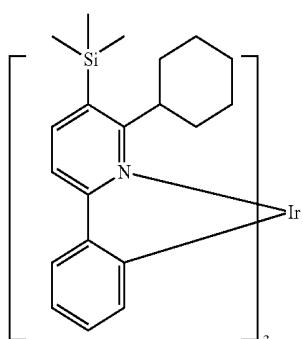
20

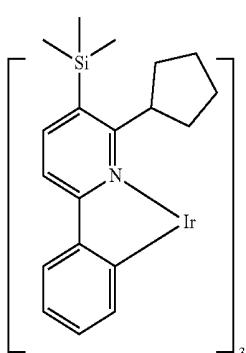


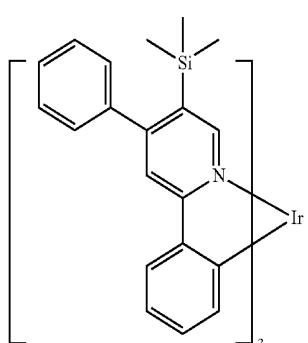
-continued

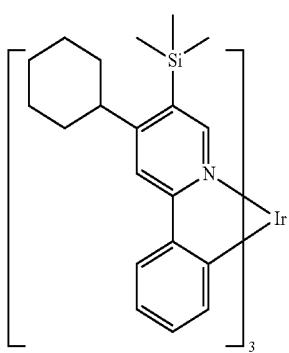


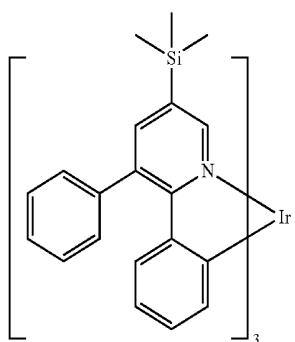
21


-continued

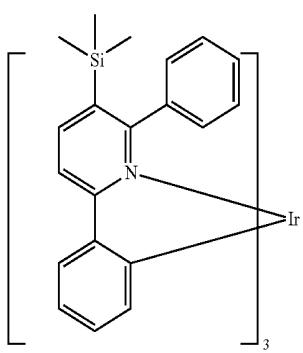

25


22

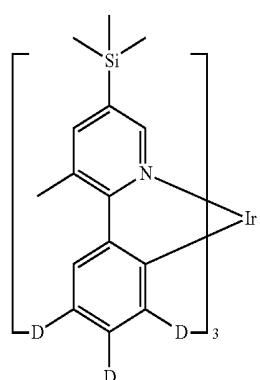

26


23

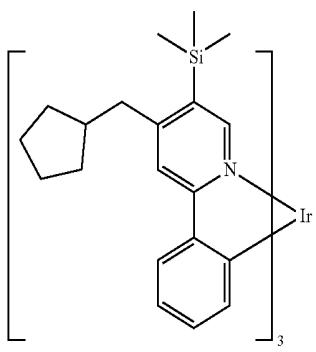
27



24

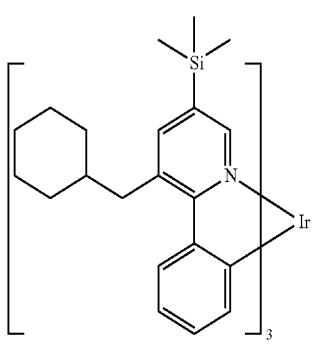

28

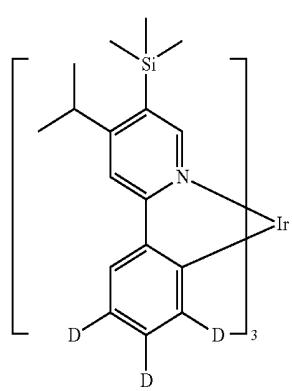
-continued

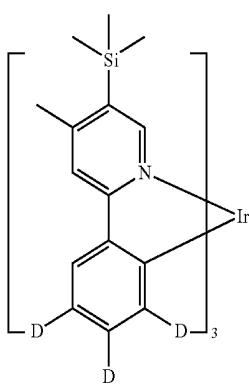


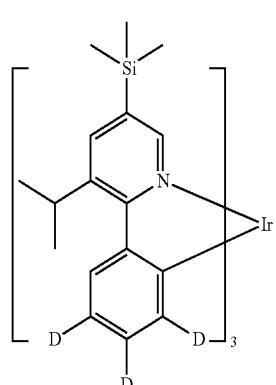
29

-continued

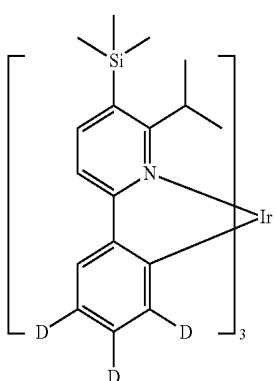

33


30

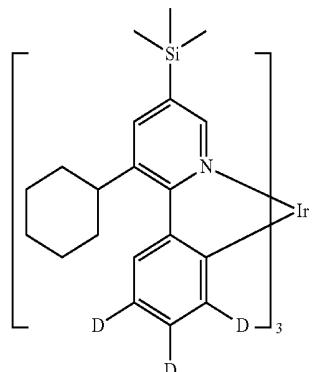

34


31

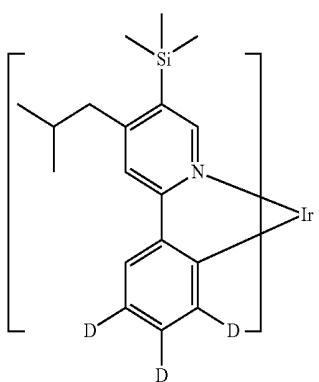
35



32

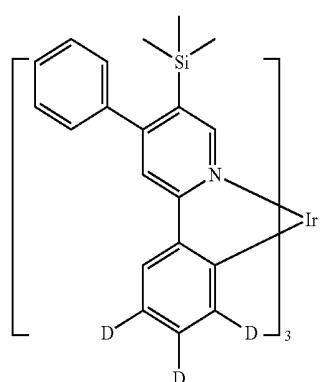

36

-continued

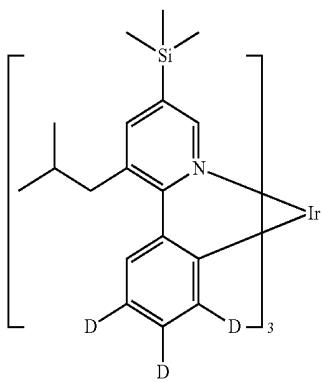


37

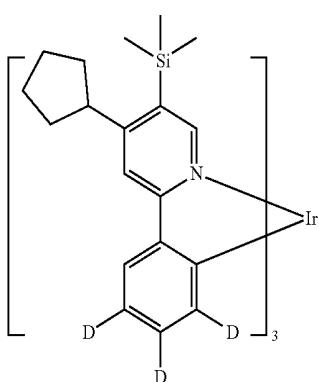
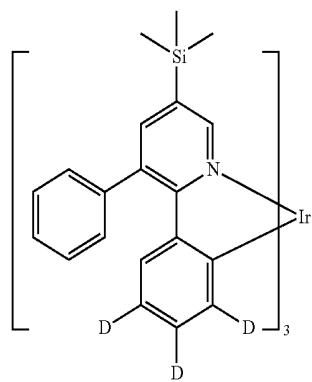
-continued



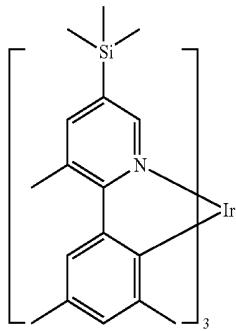
41


38

42

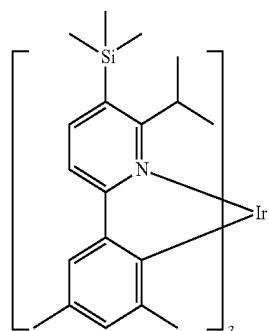


39

43

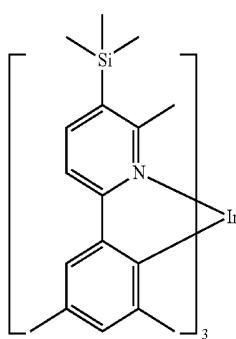


40

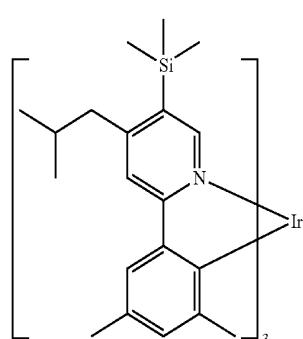
44

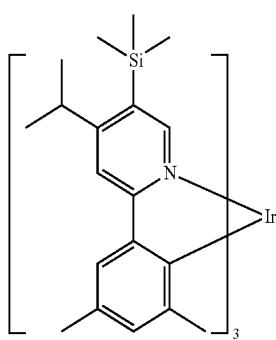


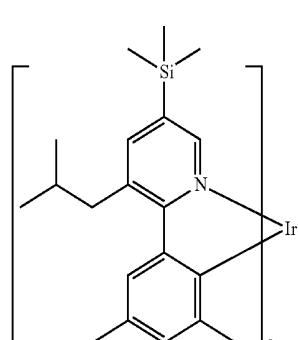
-continued

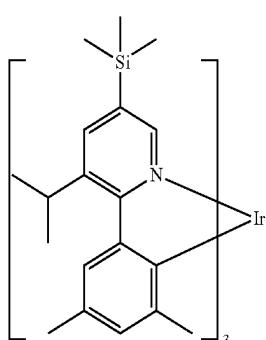


45


-continued

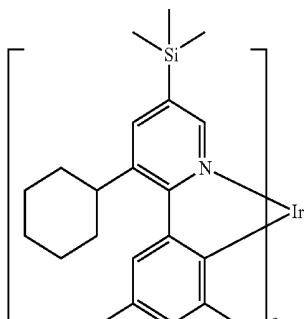

49


46

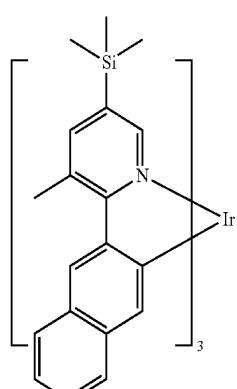

50

47

51



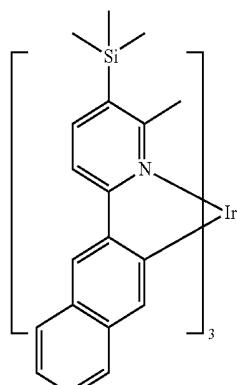
48

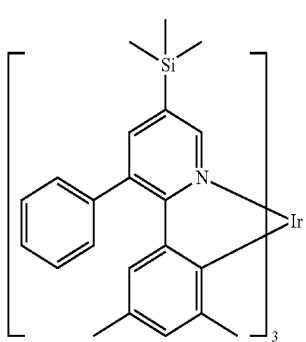

52

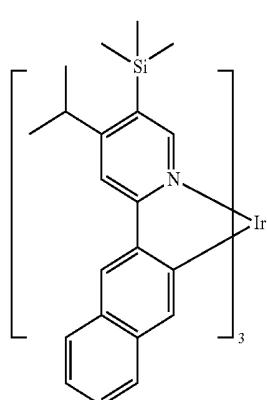
-continued

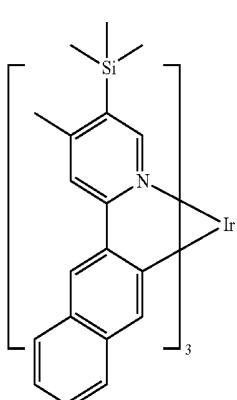


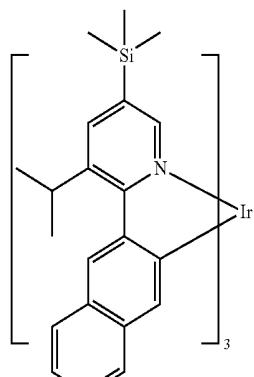
53


-continued

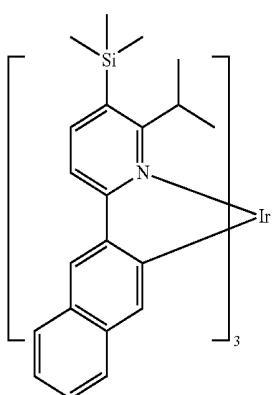

57


54

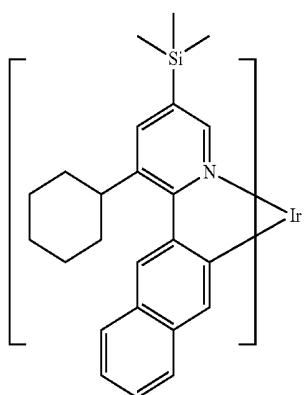

58


55

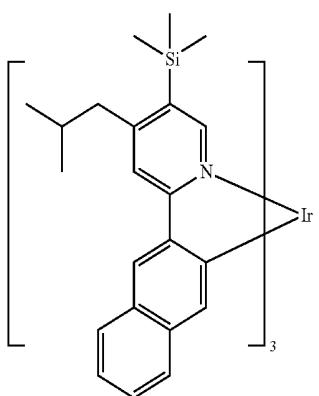
59



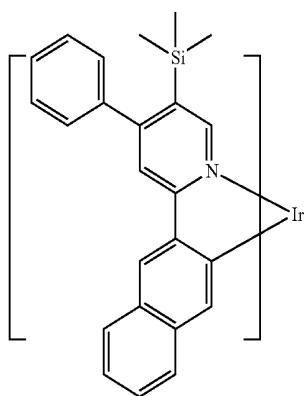
56

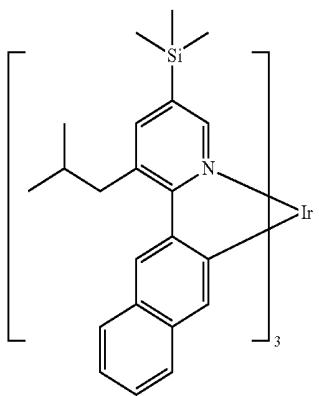

60

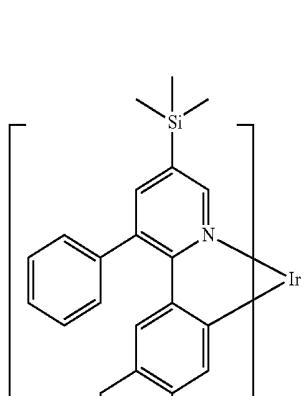
-continued

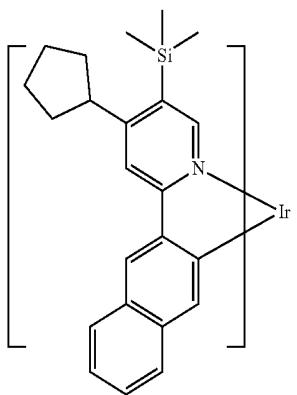


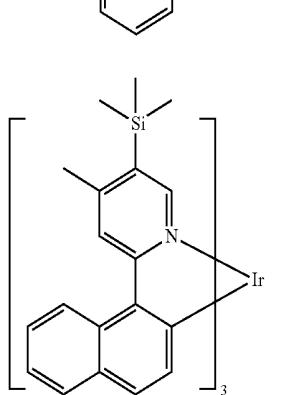
61


-continued

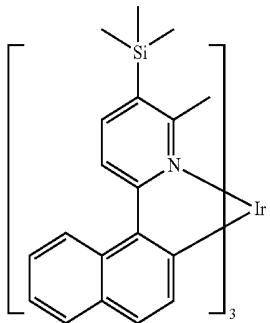

65


62

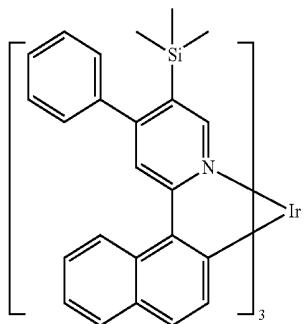

66


63

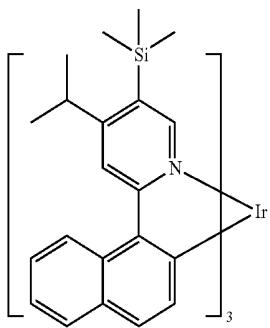
67



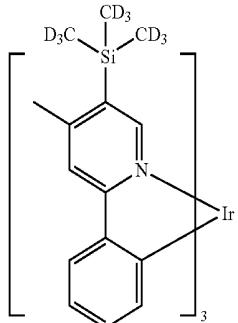
64

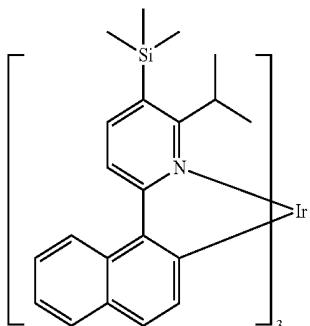

68

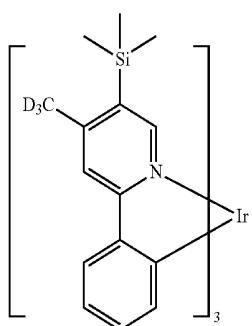
-continued

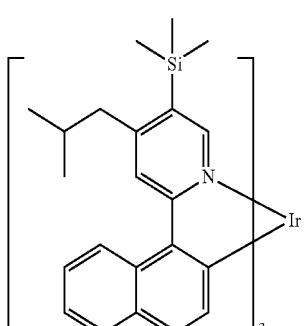


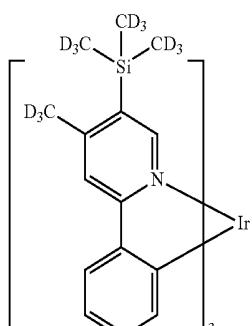
69

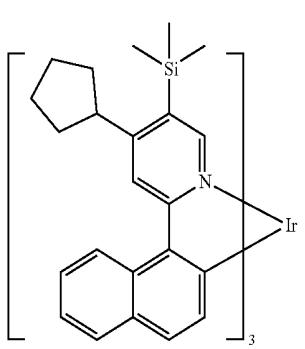

-continued

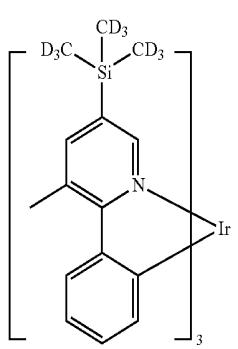

74


70

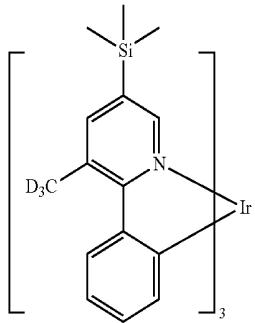

75


71

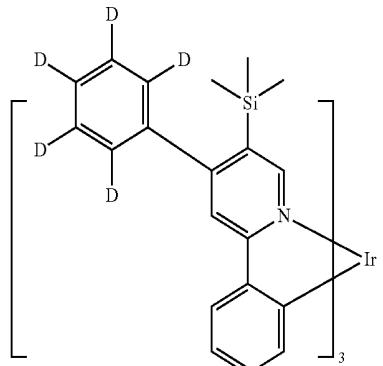

76


72

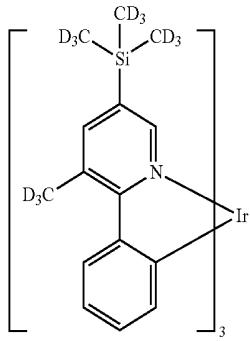
77



73

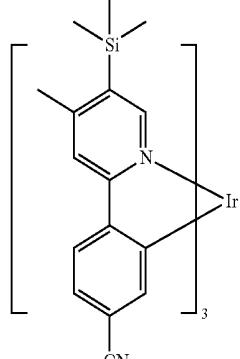

78

-continued

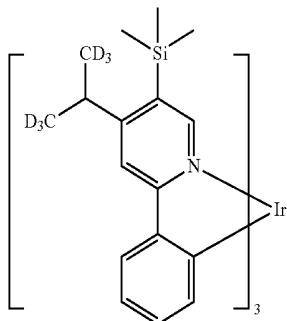


79

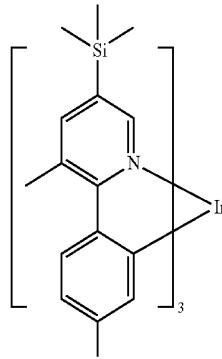
-continued



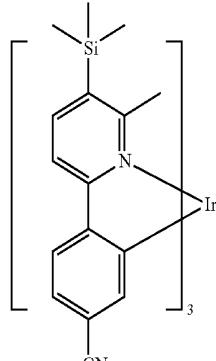
84



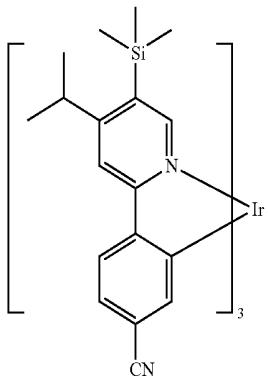
80


85

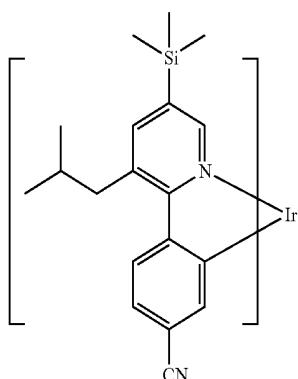
81



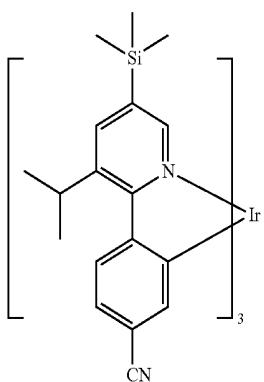
86


82

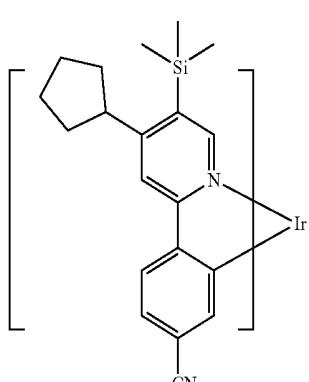
87

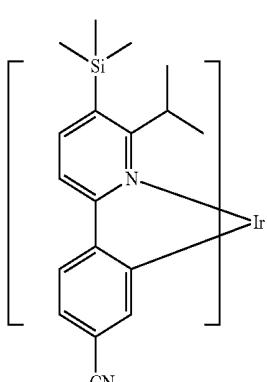

83

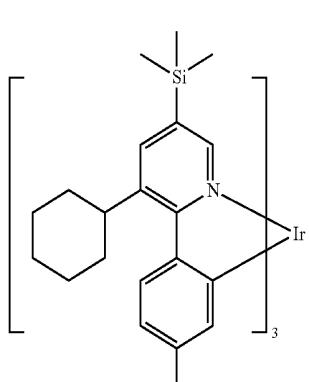
-continued

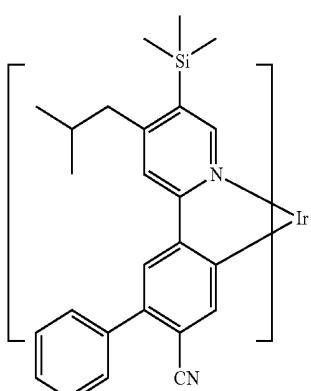


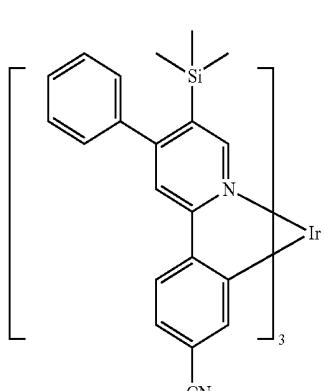
88


-continued

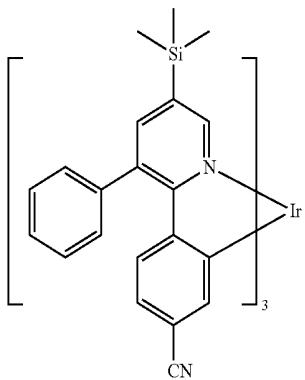

92


89

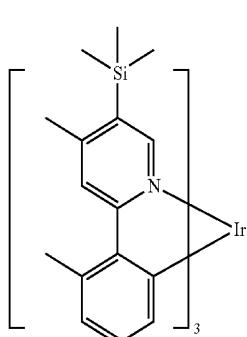
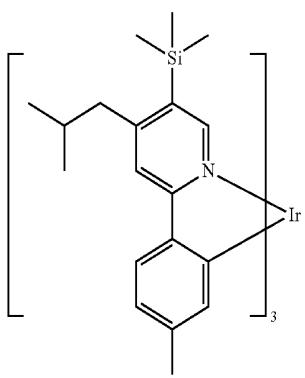
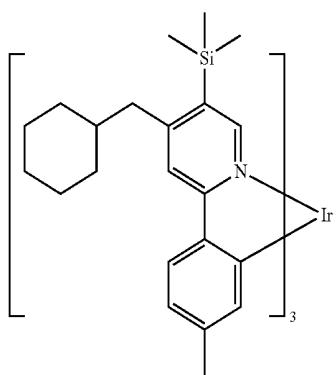
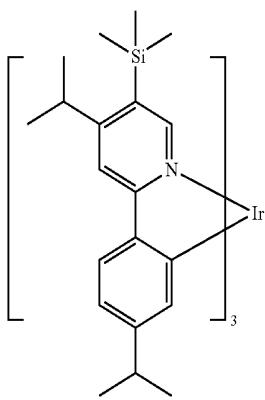
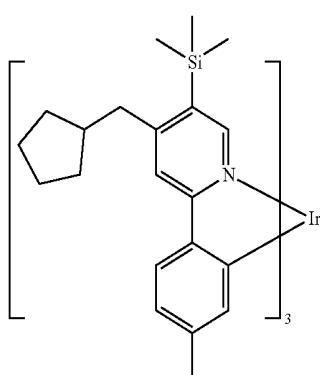
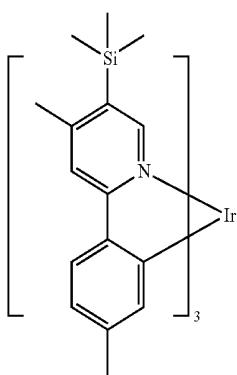
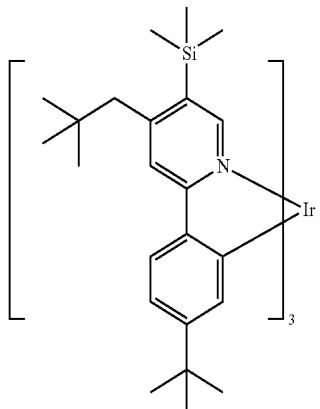

93


90

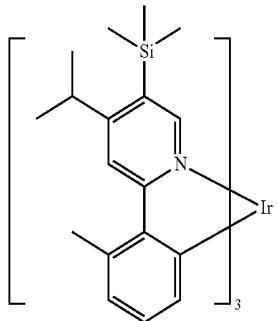
94



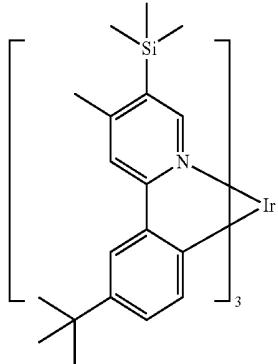
91

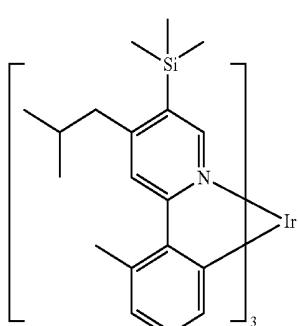
95


-continued

-continued

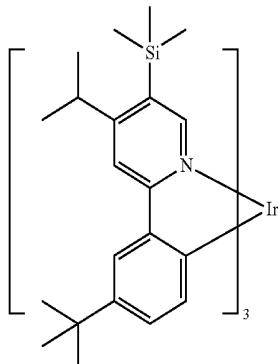


-continued

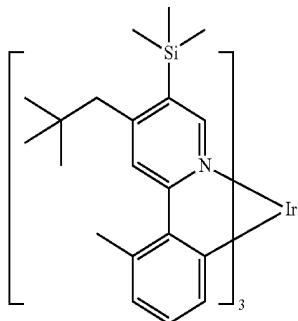


104

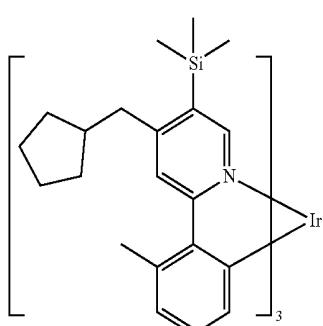
-continued



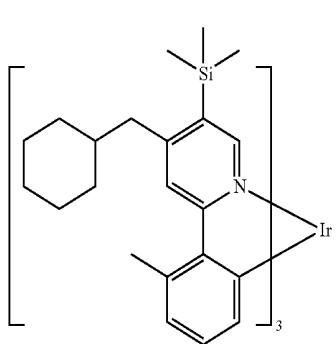
109



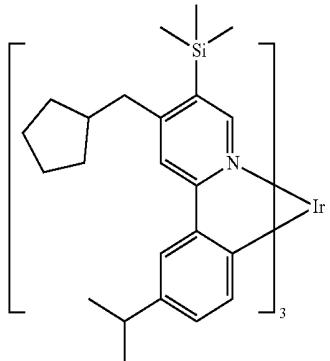
105


110

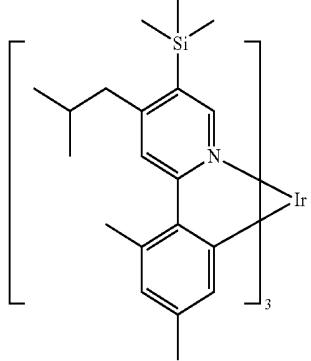
106



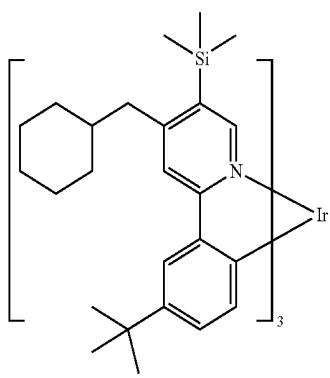
111


107

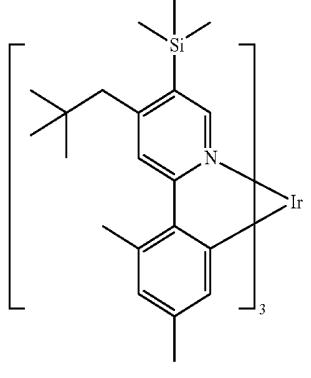
112

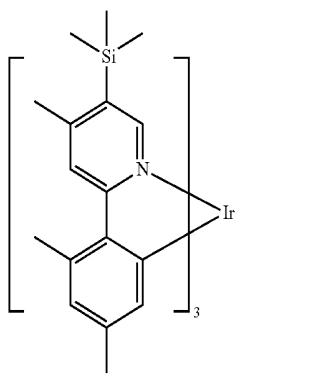

108

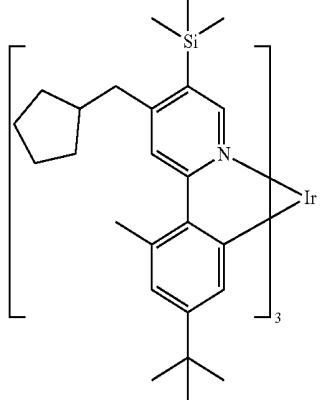
-continued

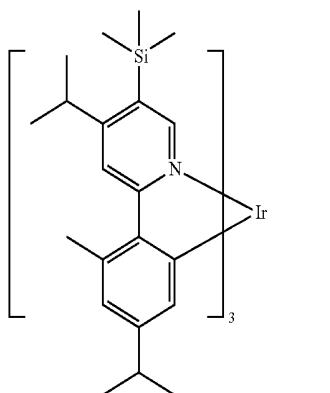


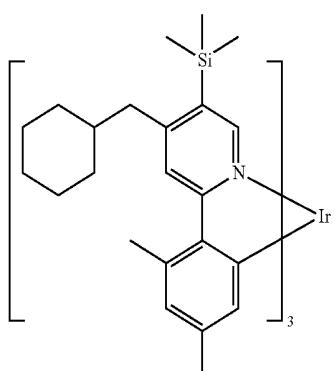
113


-continued

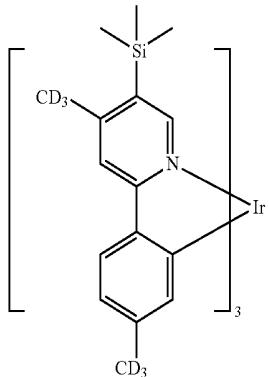

117


114

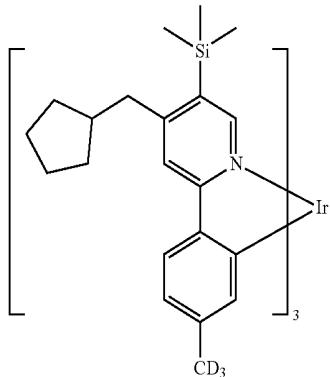

118


115

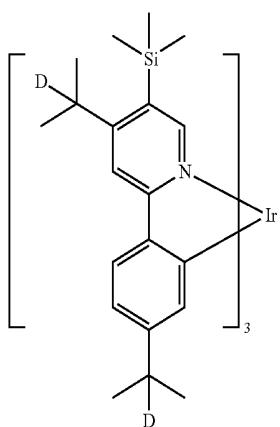
119



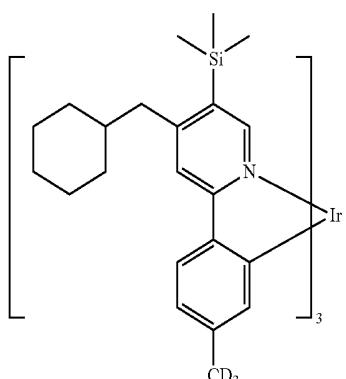
116


120

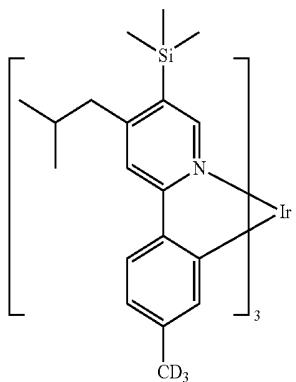
-continued

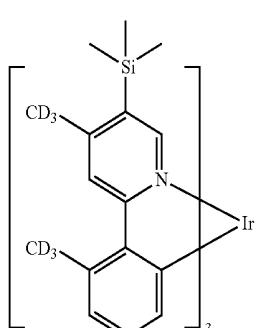

121

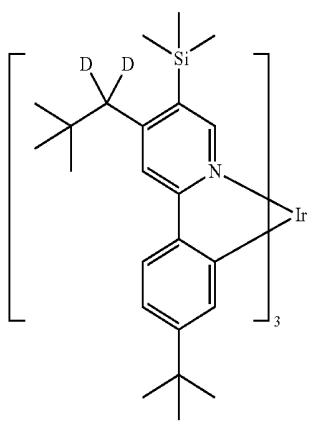
-continued

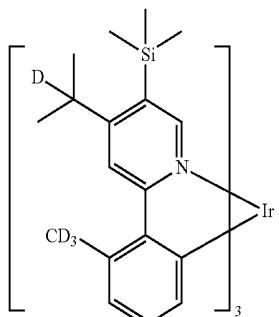


125

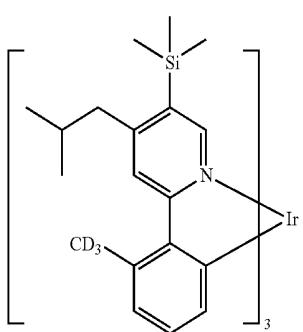

122


123

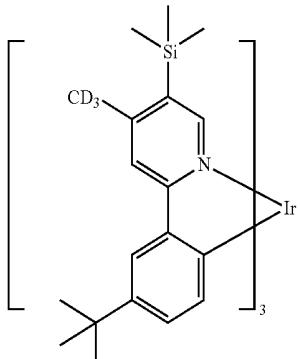

126


124

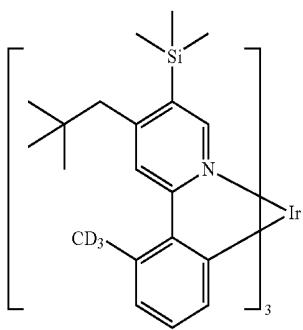
127



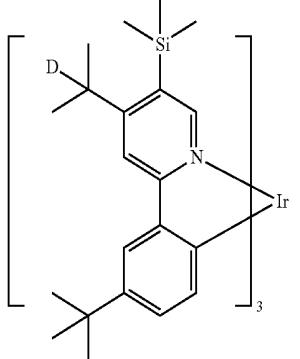
125


128

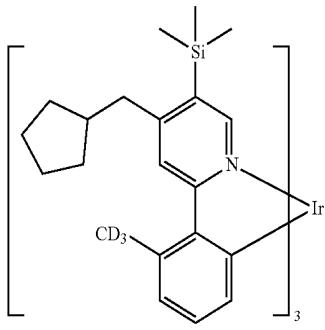
-continued

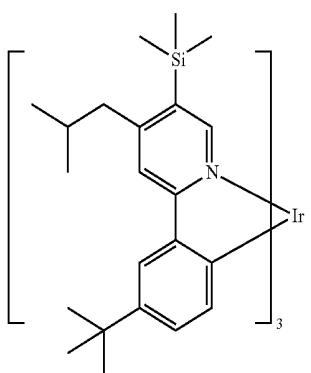

129

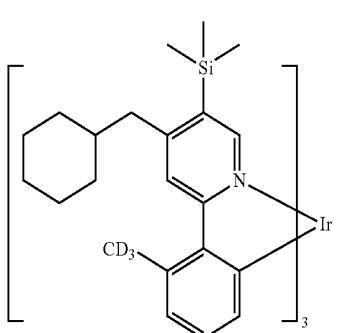
-continued

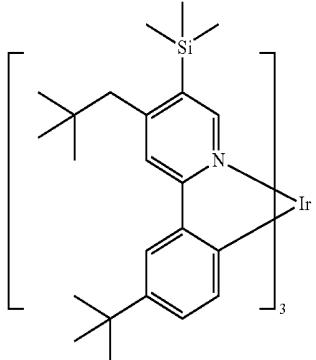


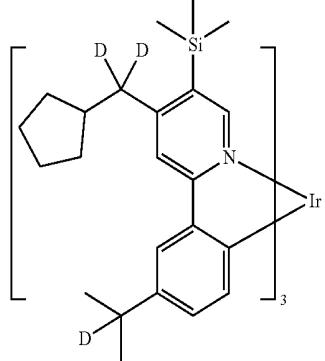
133


130

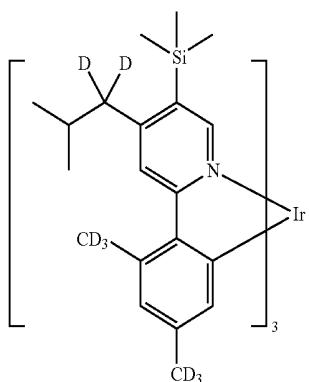

134


131

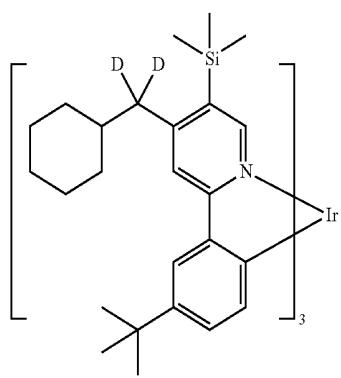

135


132

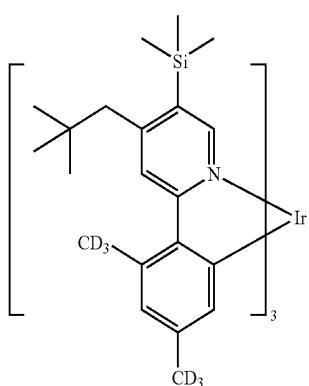
136

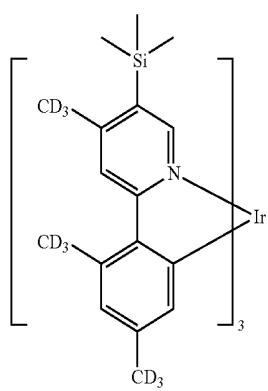


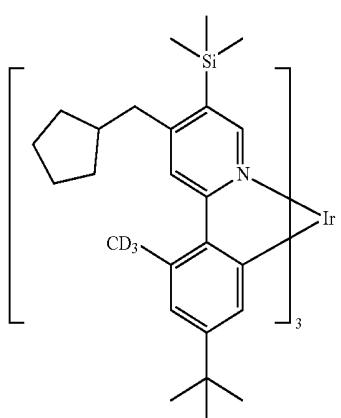
-continued

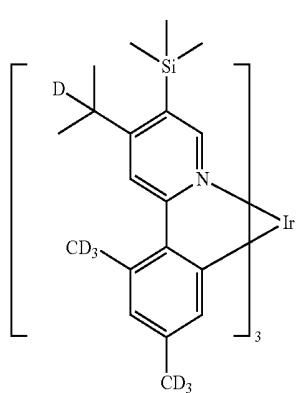


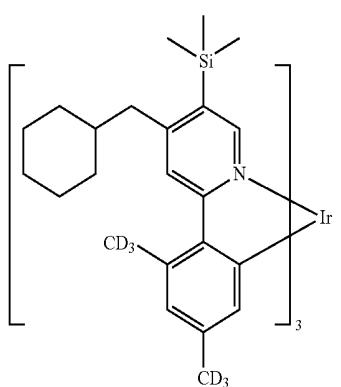
137


-continued

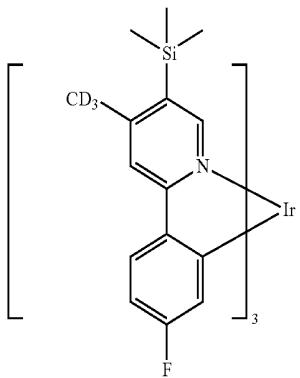

141


138

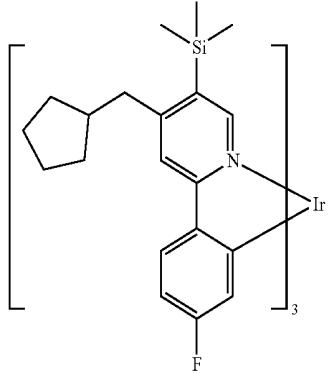

142


139

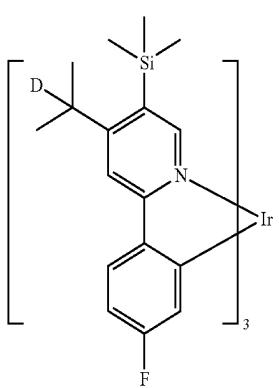
143



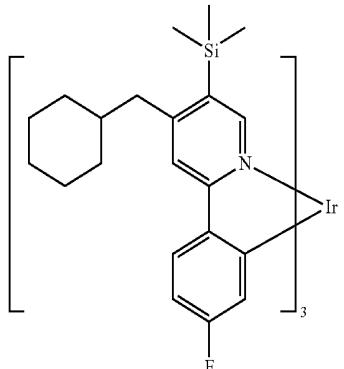
140


144

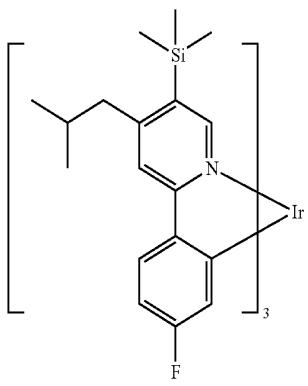
-continued

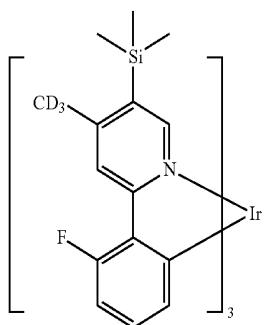

145

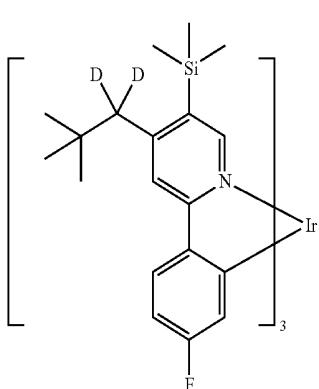
-continued

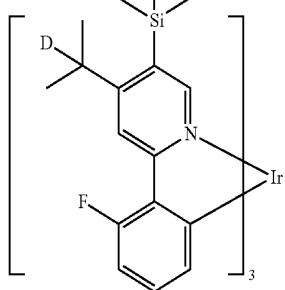


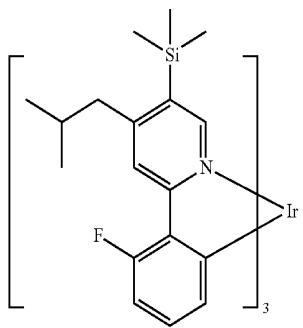
149

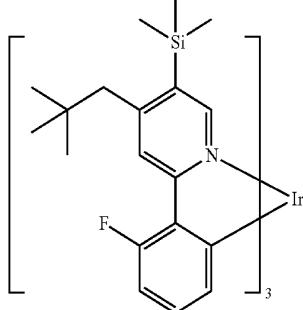

146

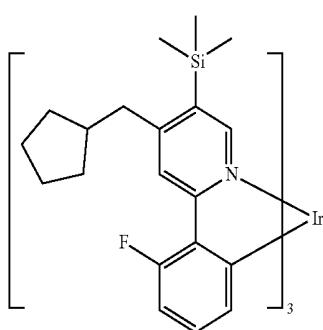

150

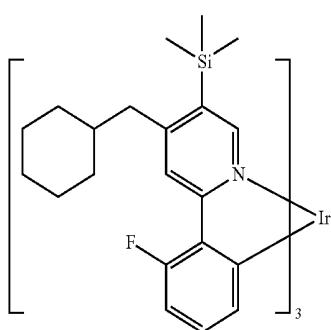

147

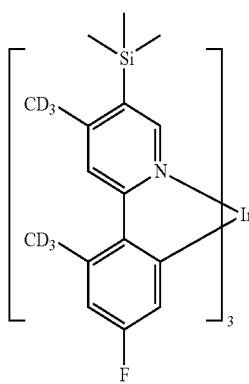

151


148

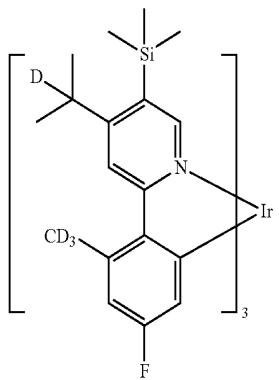

152


-continued

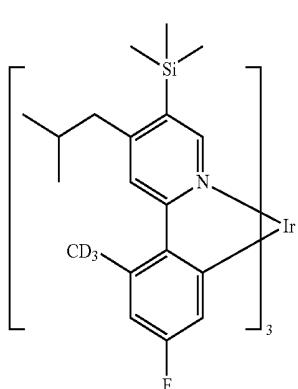

153


154

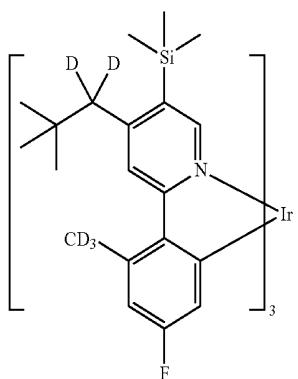
155

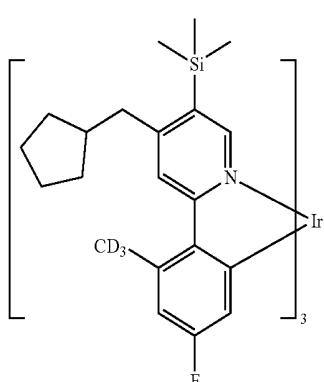


156

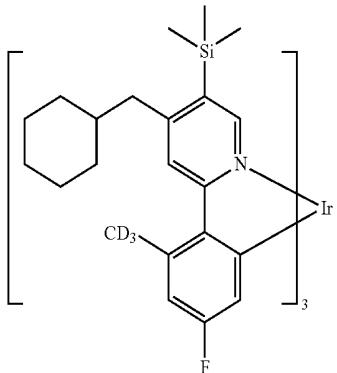


157

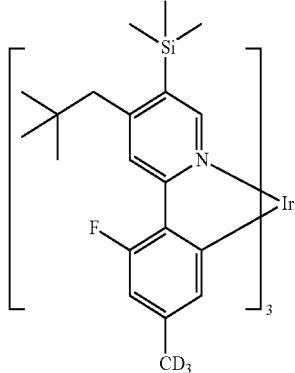

-continued


158

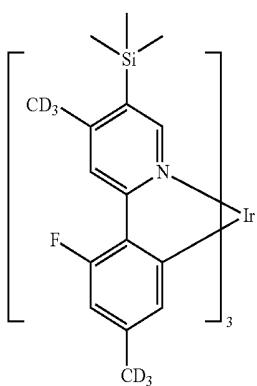
159



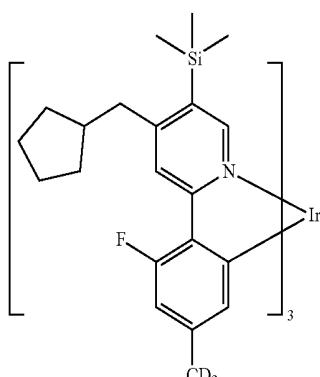
160

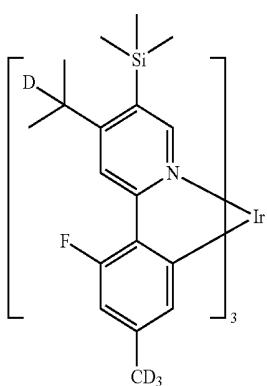

161

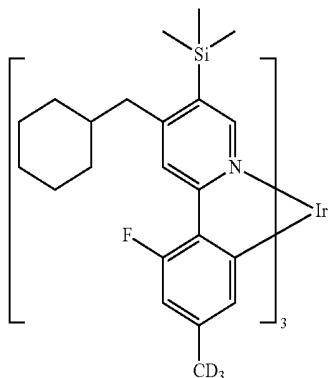
-continued

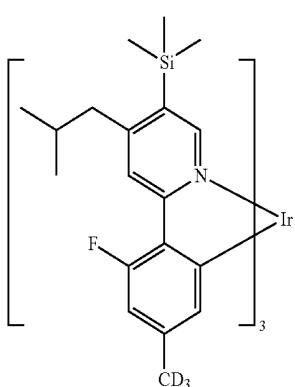


162


-continued


166


163

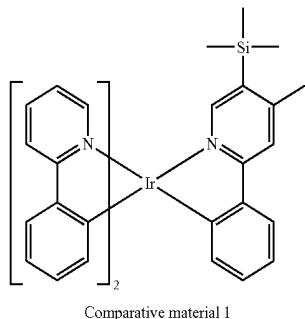

167

164

168

165

[0172] At least one selected from R_{11} to R_{13} in Formula 1 is not a hydrogen. That is, each of R_{11} to R_{13} in Formula 1 may not be a hydrogen at the same time. In some embodiments, R_{12} in Formula 1 is not a hydrogen. In such conditions, the morphology of the organometallic compound represented by Formula 1 may be improved, and accordingly, a device, for example, an organic light-emitting device, including the organometallic compound may have a long lifespan.


[0173] In some embodiments, a silyl group ($—Si(R_1)(R_2)(R_3)$) in Formula 1 (for example, Formulae 1-1 to 1-108) is bound to a fifth site of a pyridine ring, and each of R_{11} to R_{17} and R_{21} is not a silyl group (see Formula 1 and Formulae 1-1 to 1-108, and definitions for R_{11} to R_{17} and R_{21}). That is, a silyl group in Formula 1 may be bound only to a fifth site of a pyridine ring. In some embodiments, Formula 1 has identical three ligands. In such conditions, the organometallic compound represented by Formula 1 may have high triplet spin density and thermal stability at the same time.

Accordingly, a device, for example, an organic light-emitting device, including the organometallic compound represented by Formula 1, may have high efficiency.

[0174] For example, some of the organometallic compounds were evaluated by using a DFT method based on Gaussian program to measure their highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO), and triplet (T_1) energy level (structurally optimized at levels of B3LYP, 6-31G(d,p)). Evaluation results are shown in Table 1.

TABLE 1

Compound No.	HOMO (eV)	LUMO (eV)	T_1 energy level (eV)
1	-4.714	-1.184	2.567
2	-4.718	-1.158	2.572
13	-4.704	-1.120	2.612
32	-4.714	-1.184	2.567
Comparative material 1	-4.807	-1.205	2.604

[0175] From Table 1, it may be understood that the organometallic compound represented by Formula 1 has a HOMO level and a LUMO level, which are suitable for an organic light-emitting device, and that the organometallic compound represented by Formula 1 is a suitable emitter of luminescence energy (T_1) corresponding to visible light region.

[0176] Synthesis methods of the organometallic compound represented by Formula 1 may be apparent to one of ordinary skill in the art by referring to Synthesis Examples provided below.

[0177] The organometallic compound represented by Formula 1 is suitable for use in an organic layer of an organic light-emitting device, for example, for use as a dopant in an emission layer of the organic layer. Thus, another aspect provides an organic light-emitting device that includes:

[0178] a first electrode;

[0179] a second electrode; and

[0180] an organic layer that is disposed between the first electrode and the second electrode,

[0181] wherein the organic layer includes an emission layer and at least one of organometallic compound represented by Formula 1.

[0182] The organic light-emitting device may have, due to the inclusion of an organic layer including the organometallic compound represented by Formula 1, low driving voltage, high efficiency, high power, high quantum efficiency, long lifespan and excellent color.

[0183] The organometallic compound of Formula 1 may be used between a pair of electrodes of an organic light-emitting device. For example, the organometallic compound

represented by Formula 1 may be included in the emission layer. In this regard, the organometallic compound may act as a dopant, and the emission layer may further include a host (that is, an amount of the organometallic compound represented by Formula 1 is smaller than an amount of the host).

[0184] The expression “(an organic layer) includes at least one of the organometallic compounds” as used herein may include an embodiment in which “(an organic layer) includes identical organometallic compounds of Formula 1 and an embodiment in which (an organic layer) includes two or more different organometallic compounds of Formula 1.

[0185] For example, the organic layer may include, as the organometallic compound, only Compound 1. In this regard, Compound 1 may be included in an emission layer of the organic light-emitting device. In some embodiments, the organic layer may include, as the organometallic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may be included in an identical layer (for example, Compound 1 and Compound 2 may all be included in an emission layer).

[0186] The first electrode may be an anode, which is a hole injection electrode, and the second electrode may be a cathode, which is an electron injection electrode; or the first electrode may be a cathode, which is an electron injection electrode, and the second electrode may be an anode, which is a hole injection electrode.

[0187] For example, the first electrode may be an anode, and the second electrode may be a cathode, and the organic layer may include:

[0188] i) a hole transport region that is disposed between the first electrode and the emission layer, wherein the hole transport region includes at least one selected from a hole injection layer, a hole transport layer, and an electron blocking layer, and

[0189] ii) an electron transport region that is disposed between the emission layer and the second electrode, wherein the electron transport region includes at least one selected from a hole blocking layer, an electron transport layer, and an electron injection layer.

[0190] The term “organic layer” as used herein refers to a single layer and/or a plurality of layers disposed between the first electrode and the second electrode of an organic light-emitting device. The “organic layer” may include, in addition to an organic compound, an organometallic complex including a metal.

[0191] FIG. 1 is a schematic view of an organic light-emitting device 10 according to an embodiment. Hereinafter, the structure of an organic light-emitting device according to an embodiment and a method of manufacturing an organic light-emitting device according to an embodiment will be described in connection with FIG. 1. The organic light-emitting device 10 includes a first electrode 11, an organic layer 15, and a second electrode 19, which are sequentially stacked.

[0192] In FIG. 1, a substrate may be additionally disposed under the first electrode 11 or above the second electrode 19. For use as the substrate, any substrate that is suitable for general organic light-emitting devices may be used, and the substrate may be a glass substrate or transparent plastic substrate, each with excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water-resistance.

[0193] The first electrode **11** may be formed by depositing or sputtering a material for forming the first electrode on the substrate. The first electrode **11** may be an anode. The material for the first electrode **11** may be selected from materials with a high work function to allow holes to be easily provided. The first electrode **11** may be a reflective electrode or a transmissive electrode. The material for the first electrode may be, for example, indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO_2), and zinc oxide (ZnO). In some embodiments, magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), or magnesium-silver (Mg—Ag) may be used as the material for the first electrode.

[0194] The first electrode **11** may have a single-layer structure or a multi-layer structure including two or more layers. For example, the first electrode **11** may have a three-layered structure of ITO/Ag/ITO, but the structure of the first electrode **110** is not limited thereto.

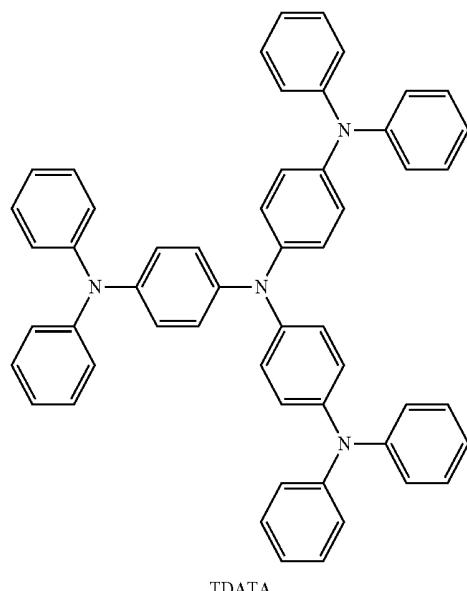
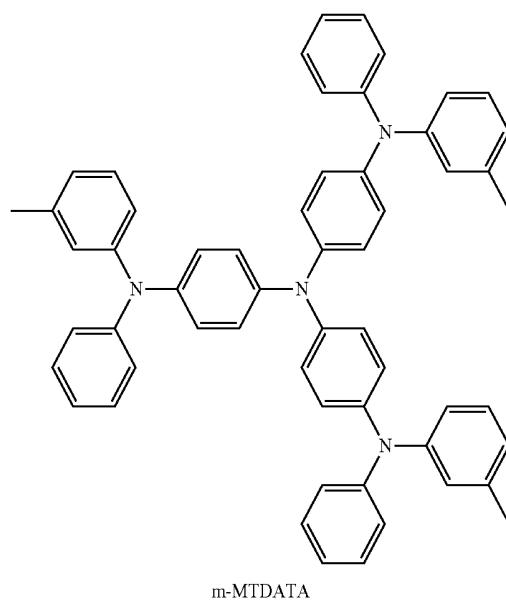
[0195] The organic layer **15** is disposed on the first electrode **11**.

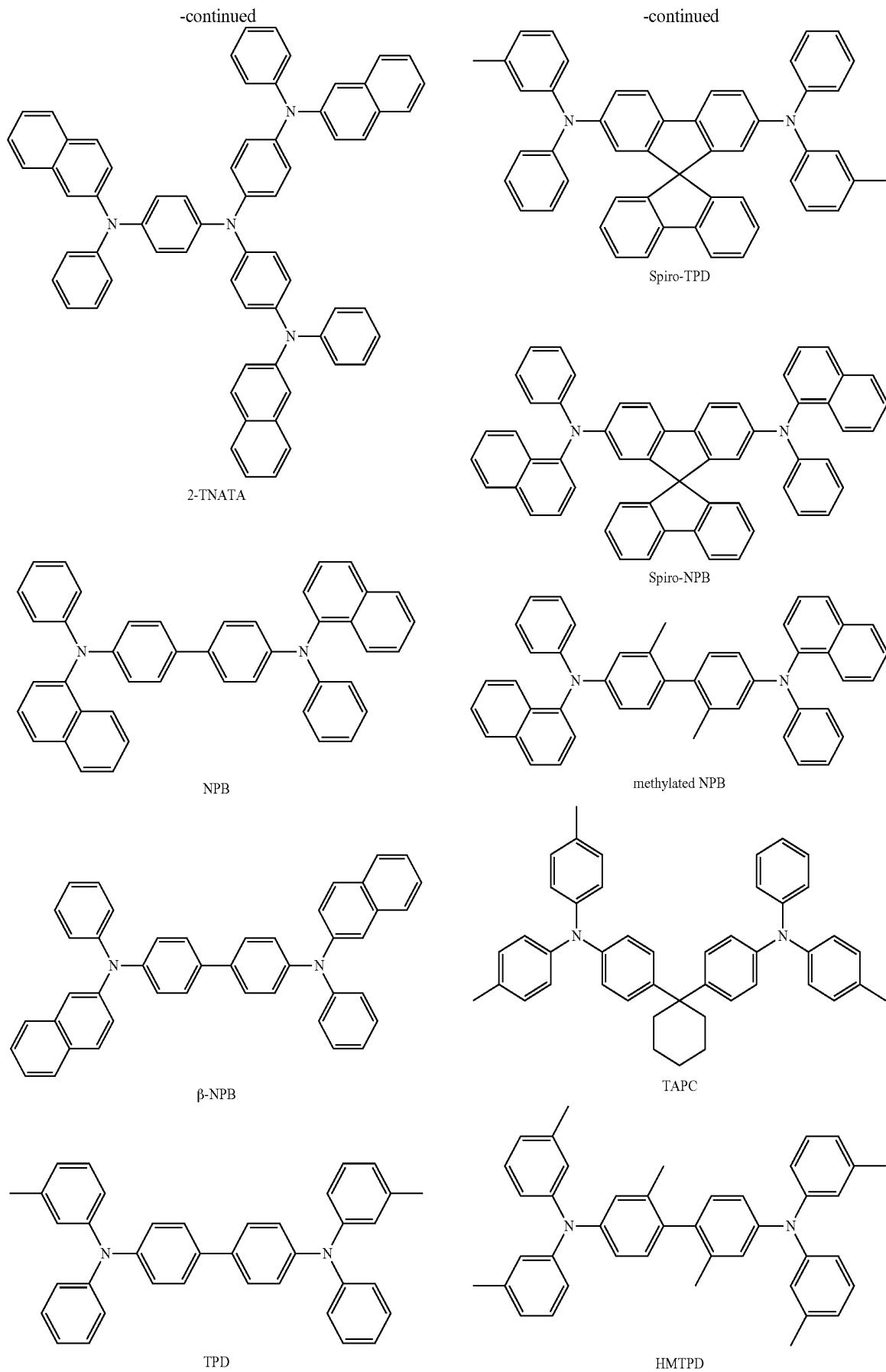
[0196] The organic layer **15** may include a hole transport region, an emission layer, and an electron transport region.

[0197] The hole transport region may be disposed between the first electrode **11** and the emission layer.

[0198] The hole transport region may include at least one selected from a hole injection layer, a hole transport layer, an electron blocking layer, and a buffer layer.

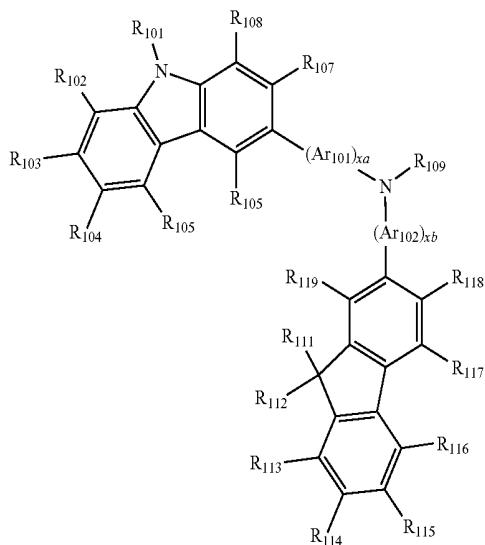
[0199] The hole transport region may include only either a hole injection layer or a hole transport layer. In some embodiments, the hole transport region may have a structure of hole injection layer/hole transport layer or hole injection layer/hole transport layer/electron blocking layer, which are sequentially stacked in this stated order from the first electrode **11**.

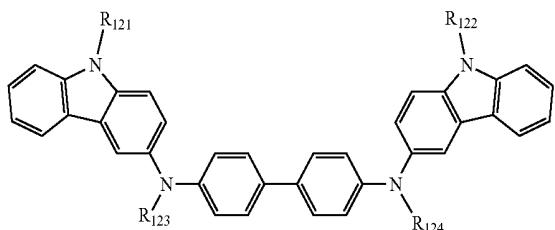


[0200] A hole injection layer may be formed on the first electrode **11** by using various methods, such as vacuum deposition, spin coating, casting, or Langmuir-Blodgett (LB) deposition.


[0201] When a hole injection layer is formed by vacuum deposition, the deposition conditions may vary according to a material that is used to form the hole injection layer, and the structure and thermal characteristics of the hole injection layer. For example, the deposition conditions may include a deposition temperature of about 100 to about 500° C., a vacuum degree of about 10^{-8} to about 10^{-3} torr, and a deposition rate of about 0.01 to about 100 Angstroms per second (Å/sec). However, the deposition conditions are not limited thereto.

[0202] When the hole injection layer is formed using spin coating, coating conditions may vary according to the material used to form the hole injection layer, and the structure and thermal properties of the hole injection layer. For example, a coating speed may be from about 2,000 revolutions per minute (rpm) to about 5,000 rpm, and a temperature at which a heat treatment is performed to remove a solvent after coating may be from about 80° C. to about 200° C. However, the coating conditions are not limited thereto.

[0203] Conditions for forming a hole transport layer and an electron blocking layer may be understood by referring to conditions for forming the hole injection layer.


[0204] The hole transport region may include at least one selected from m-MTADATA, TDATA, 2-TNATA, NPB, β -NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrene-sulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (Pani/CSA), (polyaniline)/poly(4-styrenesulfonate) (Pani/PSS), a compound represented by Formula 201 below, and a compound represented by Formula 202 below:



-continued

Formula 201

Formula 202

[0205] Ar_{101} to Ar_{102} in Formula 201 may be each independently selected from

[0206] a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthrenylene group, a triphenylenylene group, a pyrenylene group, a chryselenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, and a pentacenylene group; and a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthrenylene group, a triphenylenylene group, a pyrenylene group, a chryselenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, and a pentacenylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\text{C}_1\text{-C}_{60}$ alkyl group, a $\text{C}_2\text{-C}_{60}$

alkenyl group, a $\text{C}_2\text{-C}_{60}$ alkynyl group, a $\text{C}_1\text{-C}_{60}$ alkoxy group, a $\text{C}_3\text{-C}_{10}$ cycloalkyl group, a $\text{C}_3\text{-C}_{10}$ cycloalkenyl group, a $\text{C}_1\text{-C}_{10}$ heterocycloalkyl group, a heterocycloalkenyl group, a $\text{C}_8\text{-C}_{80}$ aryl group, a $\text{C}_8\text{-C}_{80}$ aryloxy group, a $\text{C}_6\text{-C}_{60}$ arylthio group, a $\text{C}_7\text{-C}_{80}$ arylalkyl group, a $\text{C}_1\text{-C}_{60}$ heteroaryl group, a $\text{C}_2\text{-C}_{60}$ heteroaryloxy group, a $\text{C}_2\text{-C}_{60}$ heteroarylthio group, a $\text{C}_3\text{-C}_{60}$ heteroaryalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.

[0207] In Formula 201, xa and xb may be each independently an integer of 0 to 5, or 0, 1, or 2. For example, xa is 1 and xb is 0, but xa and xb are not limited thereto.

[0208] R_{101} to R_{108} , R_{111} to R_{110} and R_{121} to R_{124} in Formulae 201 and 202 may be each independently selected from

[0209] a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\text{C}_1\text{-C}_{10}$ alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and so on), and a $\text{C}_1\text{-C}_{10}$ alkoxy group (for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, and so on);

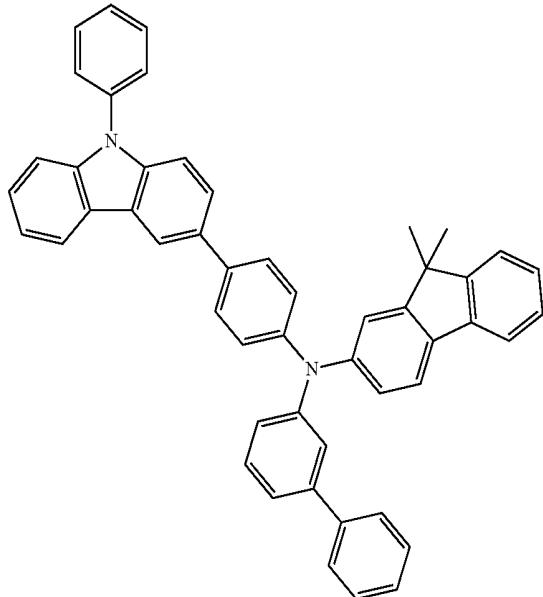
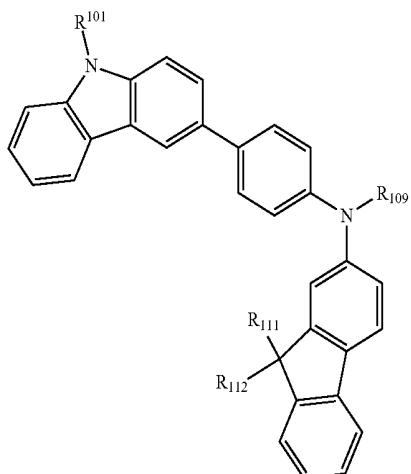
[0210] a $\text{C}_1\text{-C}_{10}$ alkyl group and a $\text{C}_1\text{-C}_{10}$ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;

[0211] a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, and a pyrenyl group; and

[0212] a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, and a pyrenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\text{C}_1\text{-C}_{10}$ alkyl group, and a $\text{C}_1\text{-C}_{10}$ alkoxy group, but it may be considered that they are not limited thereto.

[0213] R_{109} in Formula 201 may be selected from

[0214] a phenyl group, a naphthyl group, an anthracenyl group, and a pyridinyl group; and

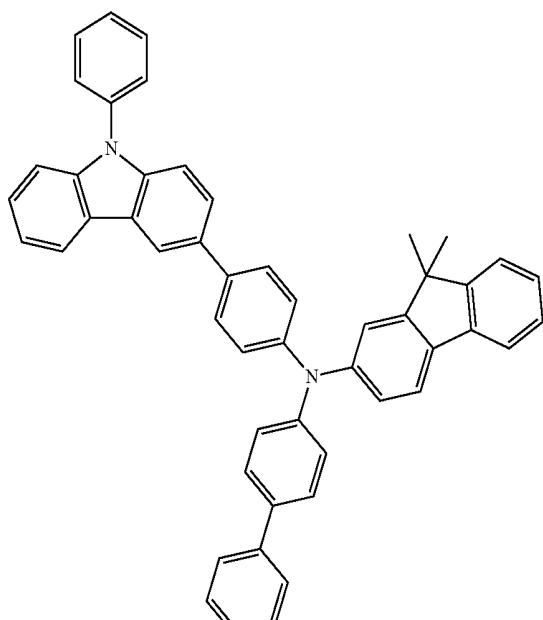
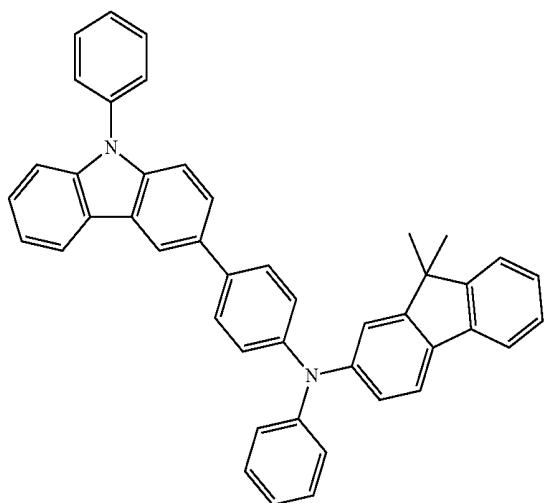


[0215] a phenyl group, a naphthyl group, an anthracenyl group, and a pyridinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\text{C}_1\text{-C}_{20}$ alkyl group, a $\text{C}_1\text{-C}_{20}$ alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, and a pyridinyl group.

[0216] According to an embodiment, the compound represented by Formula 201 may be represented by Formula 201A, but is not limited thereto:

-continued

HT2

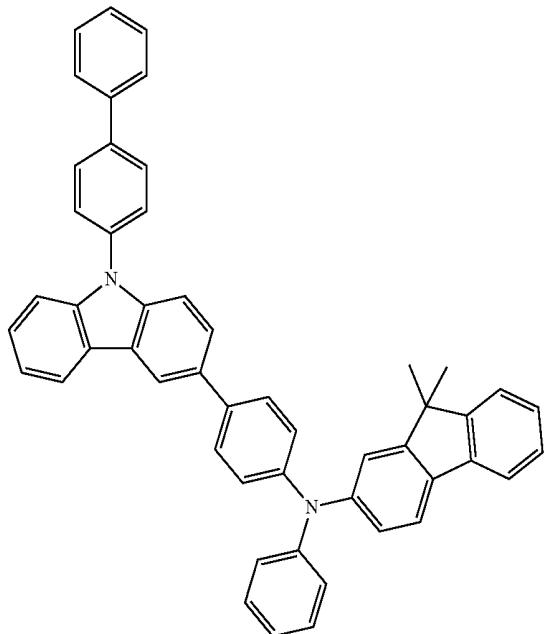
Formula 201A

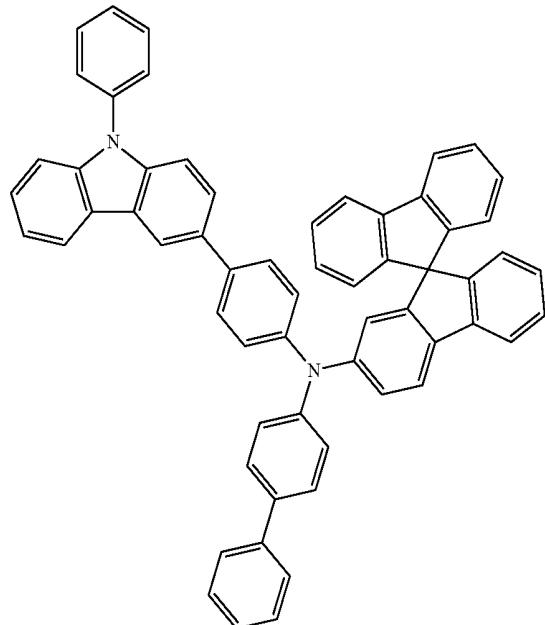



[0217] R_{101} , R_{111} , R_{112} , and R_{109} in Formula 201A may be understood by referring to the description provided herein.

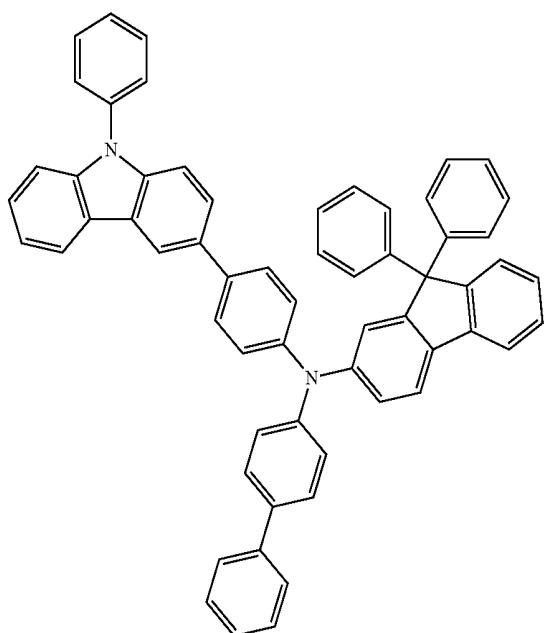
[0218] For example, the compound represented by Formula 201, and the compound represented by Formula 202 may include compounds HT1 to HT20 illustrated below, but are not limited thereto.

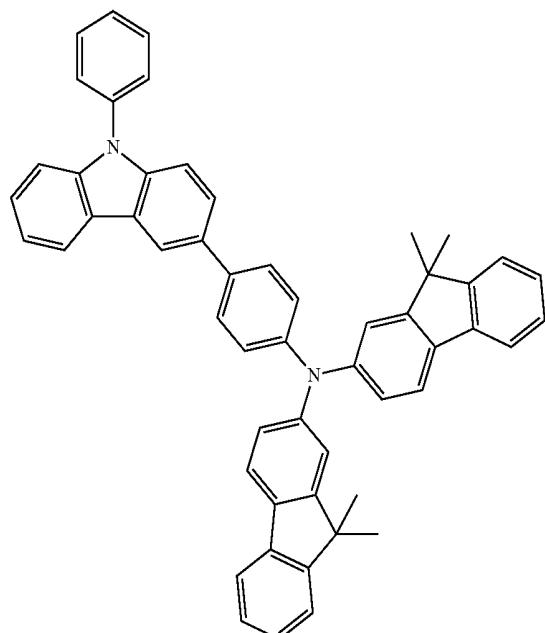
HT3


HT1

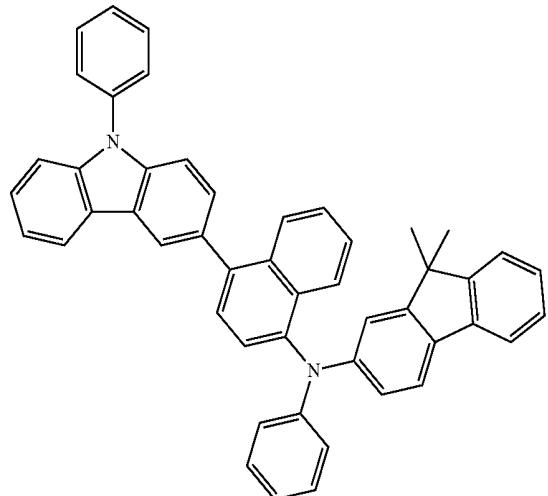

-continued

-continued

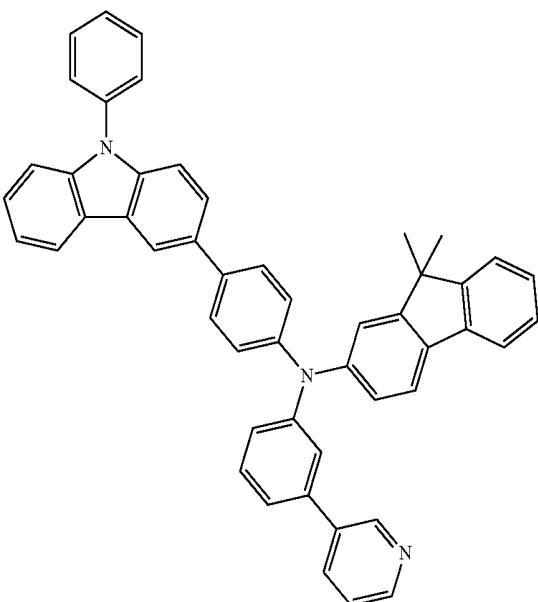

HT4


HT6

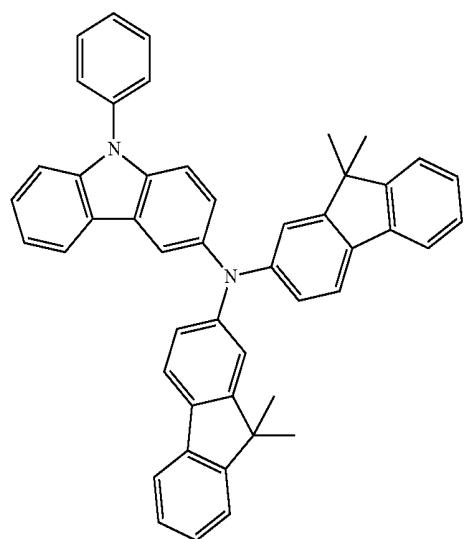
HT5



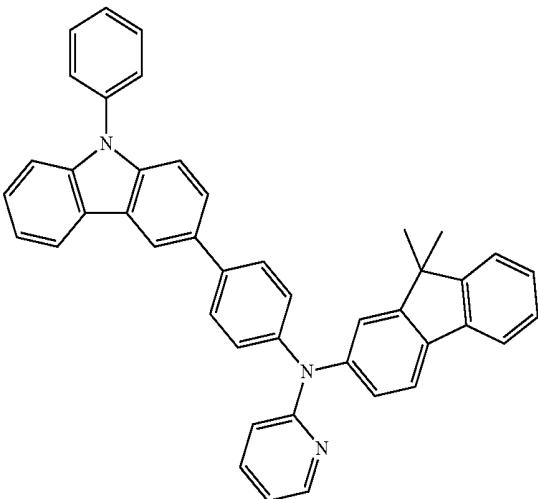
HT7

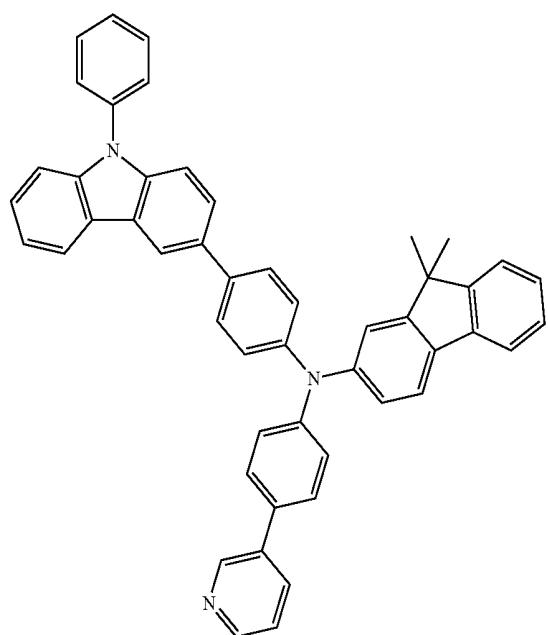

-continued

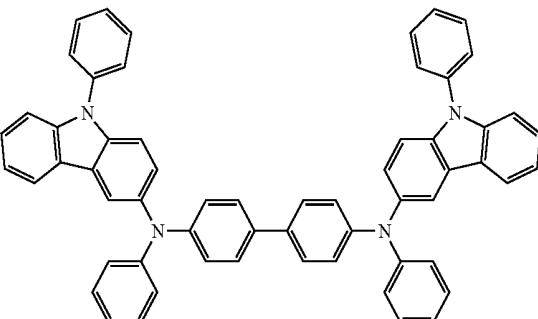
HT8



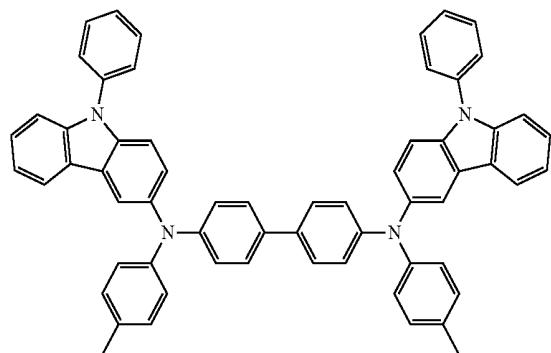
-continued


HT11

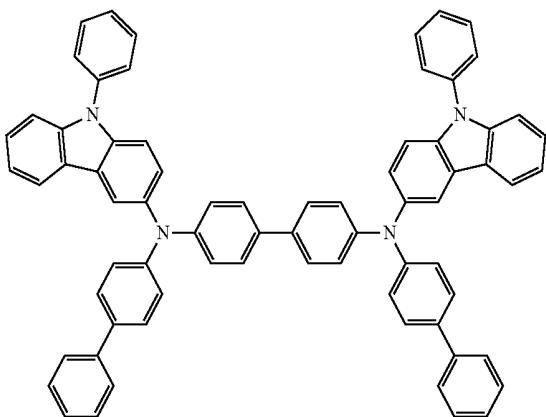

HT9


HT12

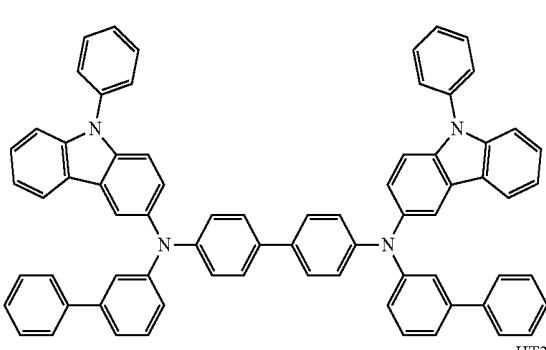
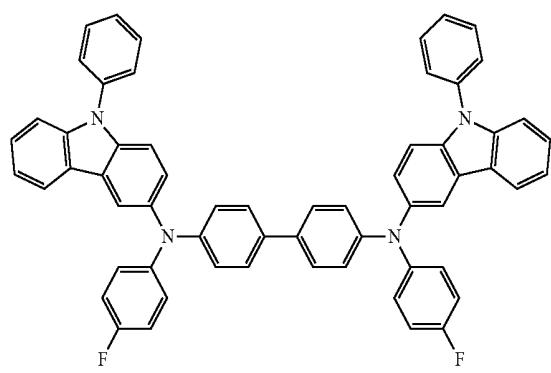
HT10



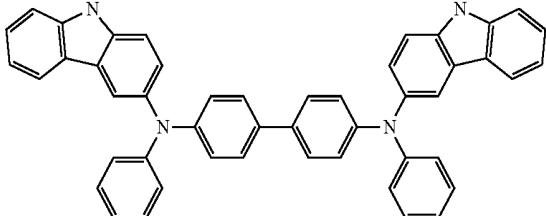
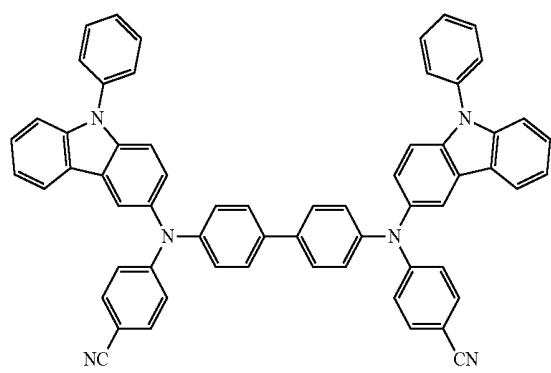
HT13

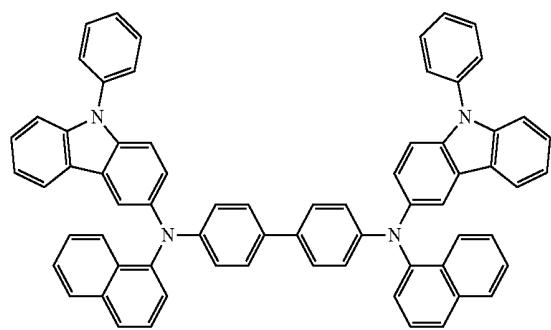

-continued

HT14

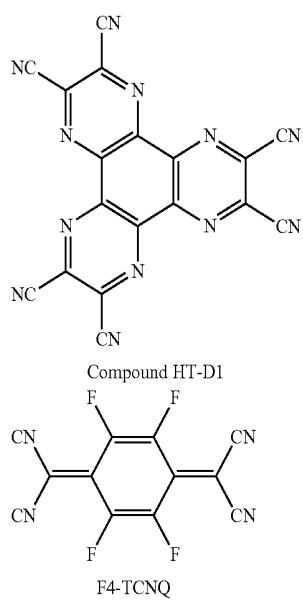
-continued



HT18


HT15

HT16

HT17



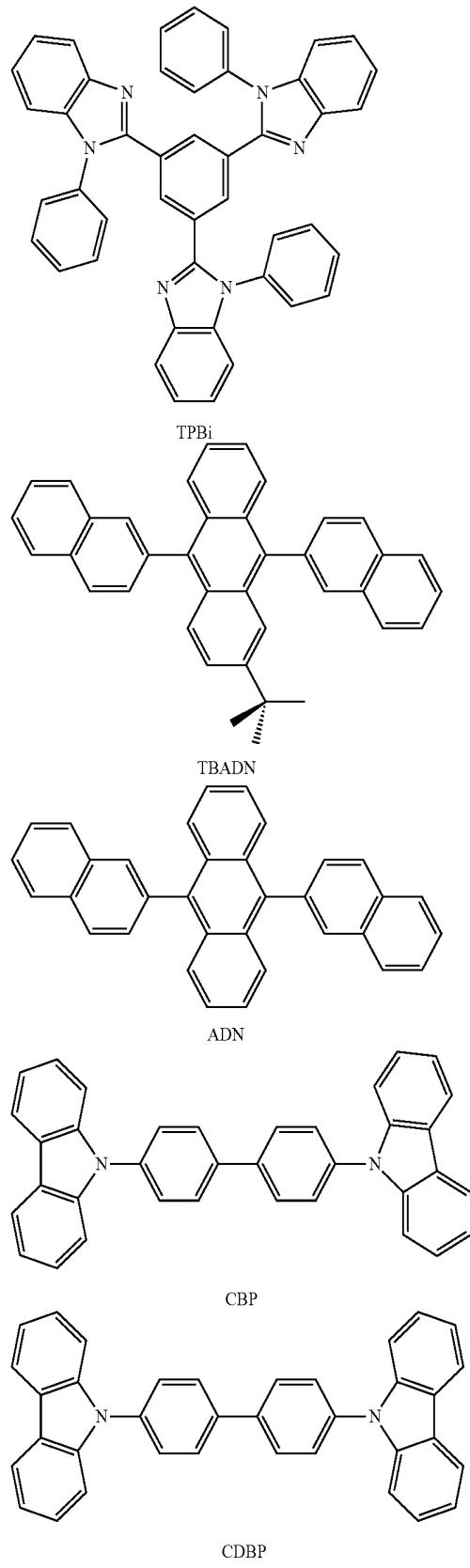
[0219] A thickness of the hole transport region may be in a range of about 100 Angstroms (Å) to about 10,000 Å, for example, about 100 Å to about 1,000 Å. While not wishing to be bound by theory, it is understood that when the hole transport region includes a hole injection layer and a hole transport layer, the thickness of the hole injection layer may be in a range of about 100 Å to about 10,000 Å, and for example, about 100 Å to about 1,000 Å, and the thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, and for example, about 100 Å to about 1,500 Å. While not wishing to be bound by theory, it is understood that when the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.

[0220] The hole transport region may further include, in addition to these materials, a charge-generation material for

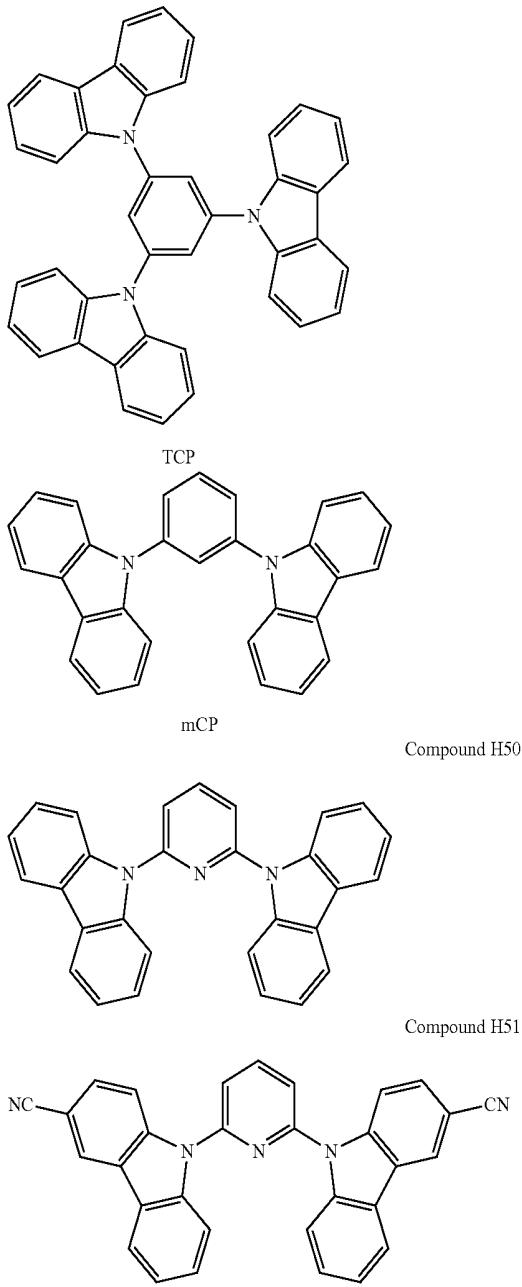
the improvement of conductive properties. The charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region.

[0221] The charge-generation material may be, for example, a p-dopant. The p-dopant may be one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound, but embodiments are not limited thereto. Non-limiting examples of the p-dopant are a quinone derivative, such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ); a metal oxide, such as a tungsten oxide or a molybdenum oxide; and a cyano group-containing compound, such as Compound HT-D1 below, but are not limited thereto.

[0222] The hole transport region may include a buffer layer.

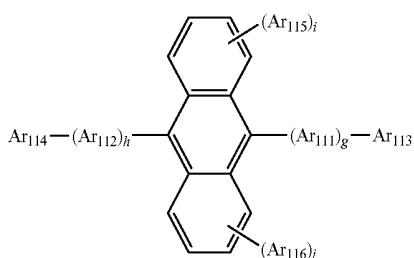

[0223] Also, the buffer layer may compensate for an optical resonance distance according to a wavelength of light emitted from the emission layer, and thus, efficiency of a formed organic light-emitting device may be improved.

[0224] Then, an emission layer (EML) may be formed on the hole transport region by vacuum deposition, spin coating, casting, LB deposition, or the like. When the emission layer is formed by vacuum deposition or spin coating, the deposition or coating conditions may be similar to those applied to form the hole injection layer, although the deposition or coating conditions may vary according to the material that is used to form the emission layer.


[0225] Meanwhile, when the hole transport region includes an electron blocking layer, a material for the electron blocking layer may be selected from materials for the hole transport region described above and materials for a host to be explained later. However, the material for the electron blocking layer is not limited thereto. For example, when the hole transport region includes an electron blocking layer, a material for the electron blocking layer may be mCP, which will be explained later.

[0226] The emission layer may include a host and a dopant, and the dopant may include the organometallic compound represented by Formula 1.

[0227] The host may include at least one selected from TPBi, TBADN, ADN (also referred to as "DNA"), CBP, CDBP, TCP, Mcp, Compound H50, and Compound H51:



-continued

[0228] In some embodiments, the host may further include a compound represented by Formula 301 below.

Formula 301

[0229] Ar_{111} to Ar_{112} in Formula 301 may be each independently selected from

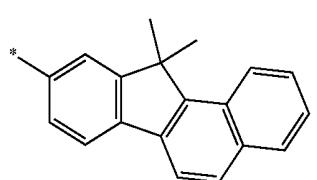
[0230] a phenylene group, a naphthylene group, a phenanthrenylene group, and a pyrenylene group; and

[0231] a phenylene group, a naphthylene group, a phenanthrenylene group, and a pyrenylene group, each substituted with at least one selected from a phenyl group, a naphthyl group, and an anthracenyl group.

[0232] Ar_{113} to Ar_{116} in Formula 301 may be each independently selected from

[0233] a C_1-C_{10} alkyl group, a phenyl group, a naphthyl group, a phenanthrenyl group, and a pyrenyl group; and

[0234] a phenyl group, a naphthyl group, a phenanthrenyl group, and a pyrenyl group, each substituted with at least one selected from a phenyl group, a naphthyl group, and an anthracenyl group.


[0235] g , h , l , and j in Formula 301 may be each independently an integer of 0 to 4, for example, an integer of 0, 1, or 2.

[0236] Ar_{113} to Ar_{116} in Formula 301 may be each independently selected from

[0237] a C_1-C_{10} alkyl group substituted with at least one selected from a phenyl group, a naphthyl group, and an anthracenyl group;

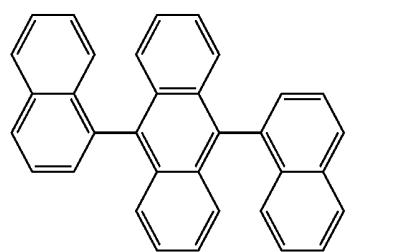
[0238] a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl, a phenanthrenyl group, and a fluorenyl group;

[0239] a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1-C_{60} alkyl group, a C_2-C_{60} alkenyl group, a C_2-C_{60} alkynyl group, a C_1-C_{60} alkoxy group, a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, and a fluorenyl group; and

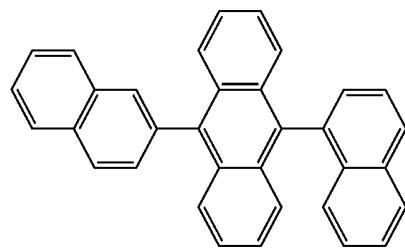
but embodiments are not limited thereto.

[0240] In some embodiments, the host may include a compound represented by Formula 302 below:

Formula 302

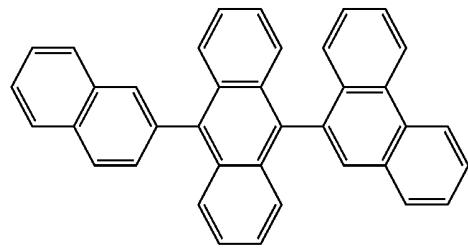


[0241] Ar_{122} to Ar_{125} in Formula 302 are the same as described in detail in connection with Ar_{113} in Formula 301.


[0242] Ar_{126} and Ar_{127} in Formula 302 may be each independently a $\text{C}_1\text{-C}_{10}$ alkyl group (for example, a methyl group, an ethyl group, or a propyl group).

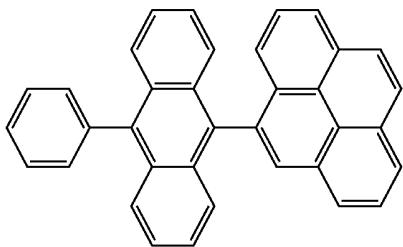
[0243] k and l in Formula 302 may be each independently an integer of 0 to 4. For example, k and l may be each independently 0, 1, or 2.

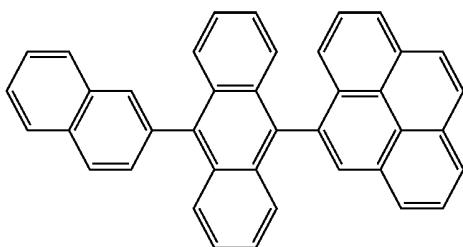
[0244] The compound represented by Formula 301 and the compound represented by Formula 302 may include Compounds H1 to H42 illustrated below, but are not limited thereto.


H1

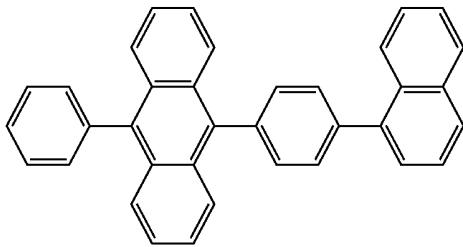
H2

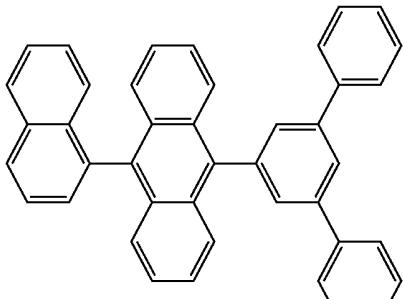
H3

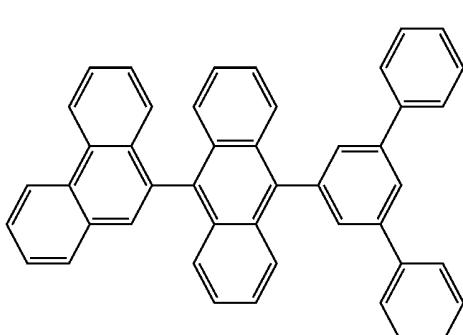

H4

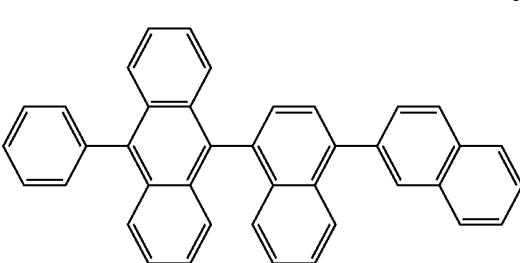

H5

-continued

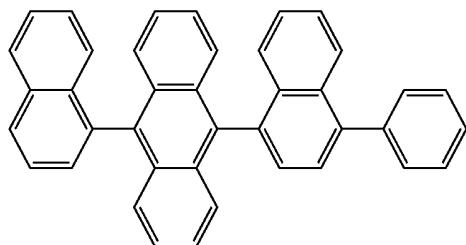

H6


H7

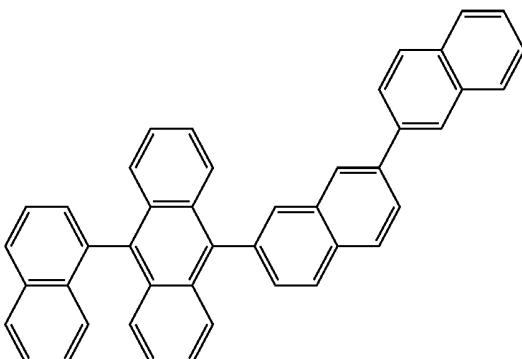

H8


H9

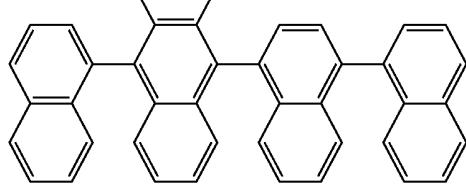
H10



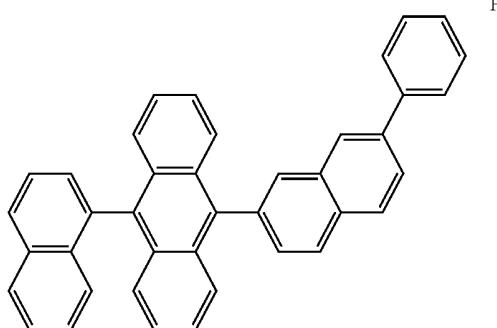
H11

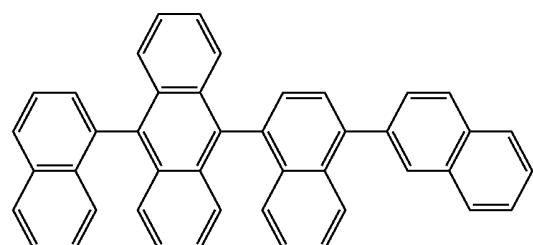

-continued

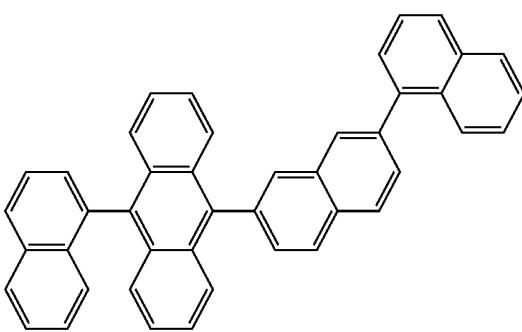
H12

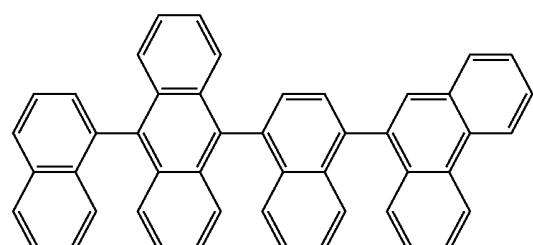


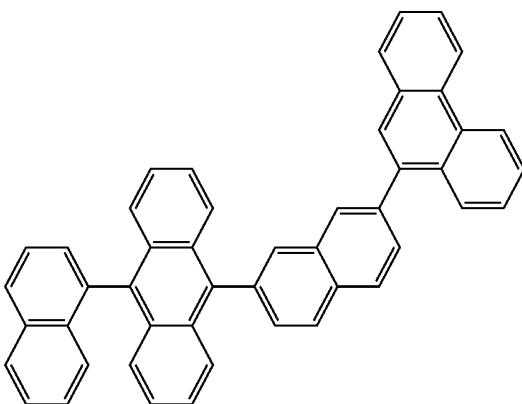
-continued

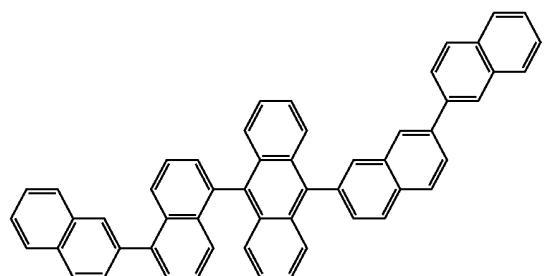

H17


H13

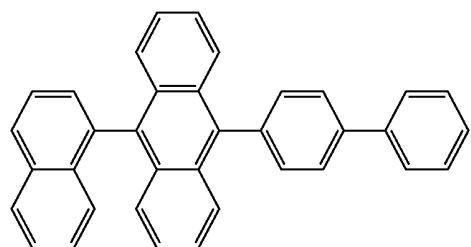

H18


H14

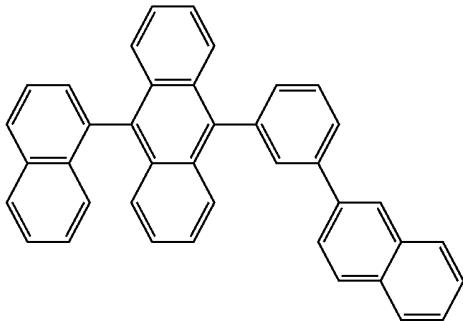

H19


H15

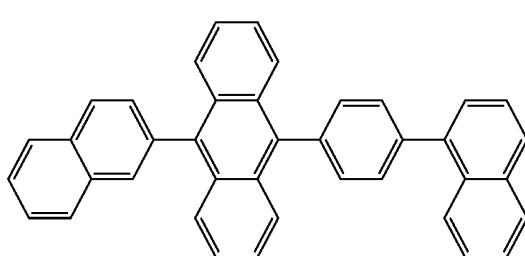
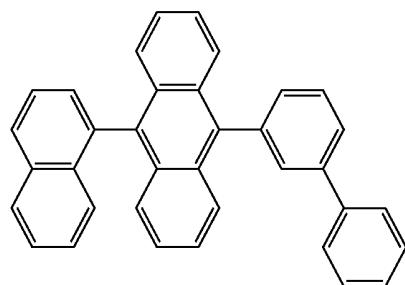
H20



H16

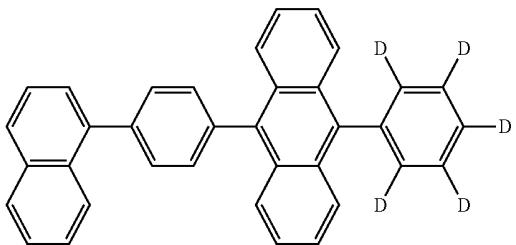
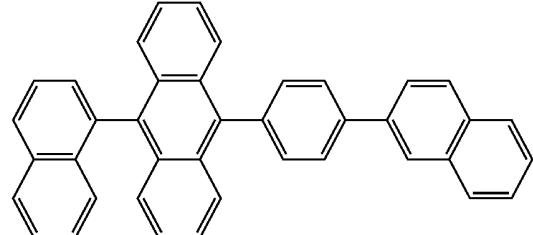

-continued

H21

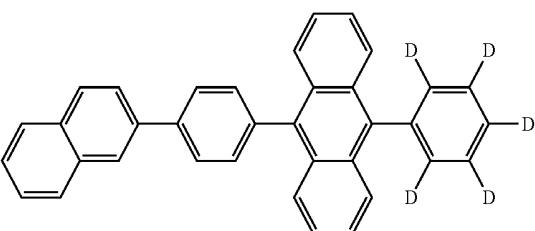
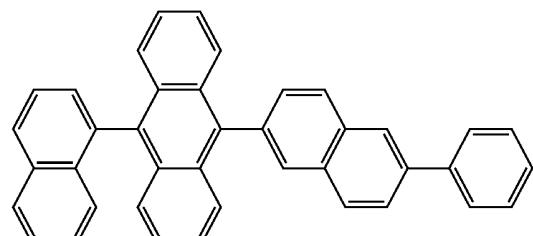



-continued

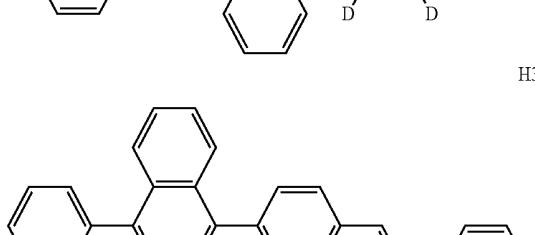
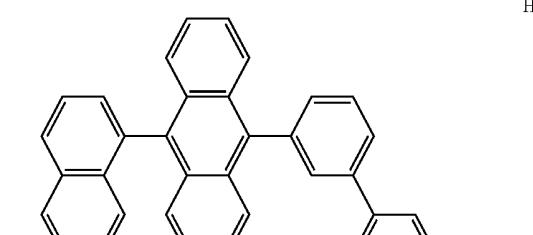
H26

H27

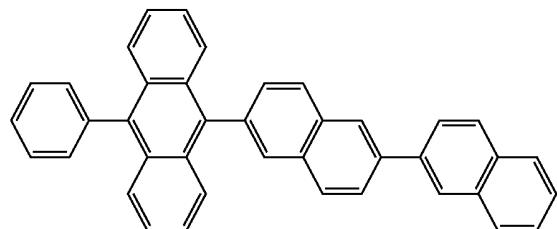


H27

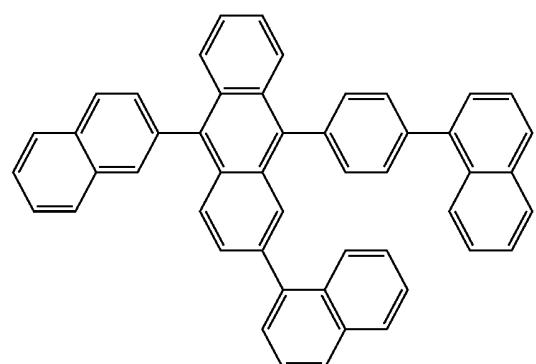
H23



H29

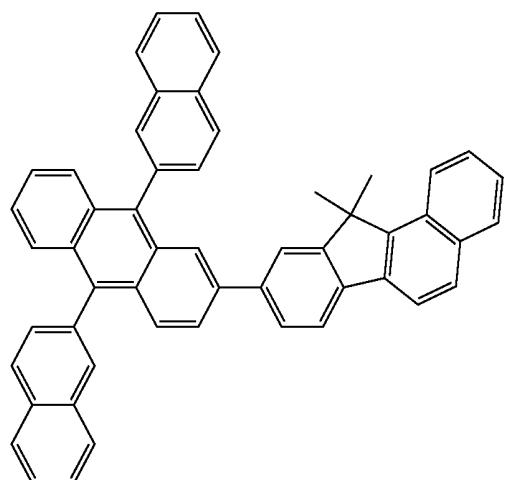
H24

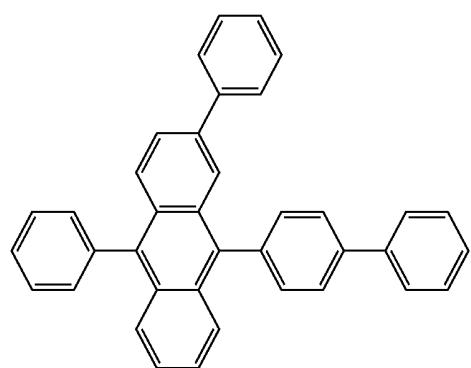
H30


H25

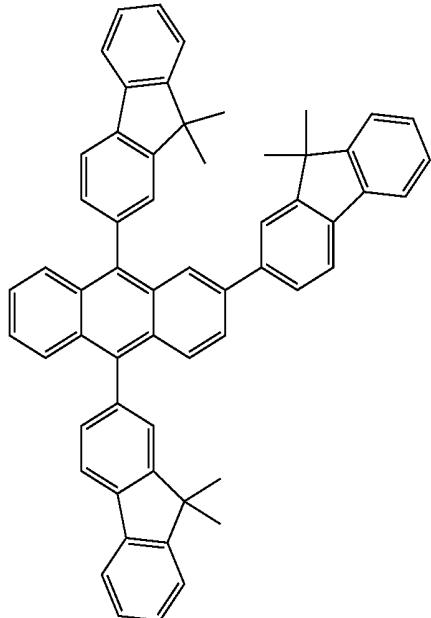

H31

-continued

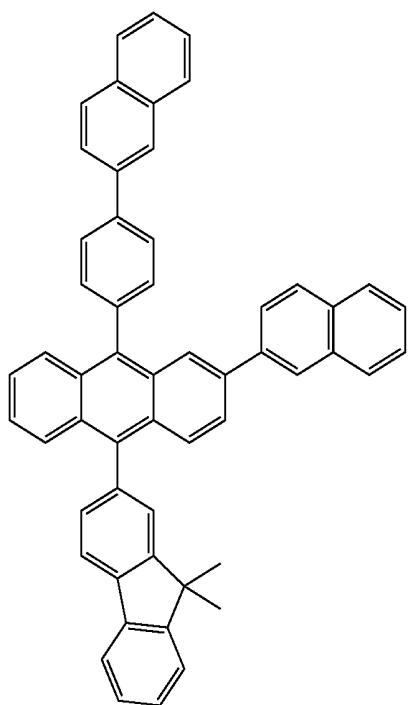

H32


H33

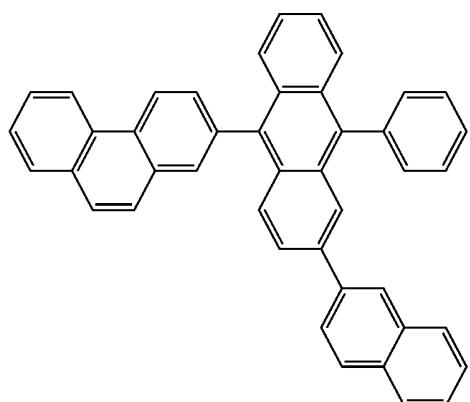
H34



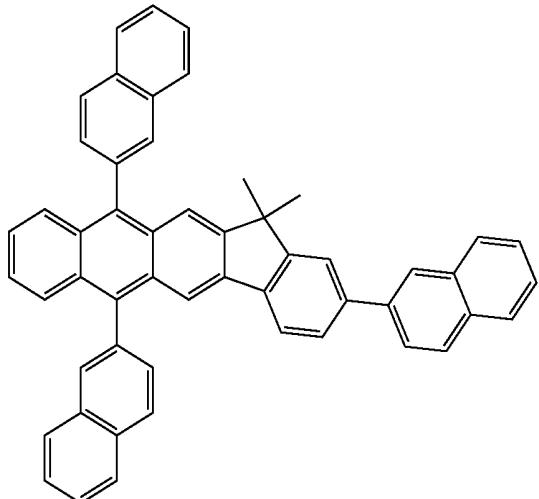
H35



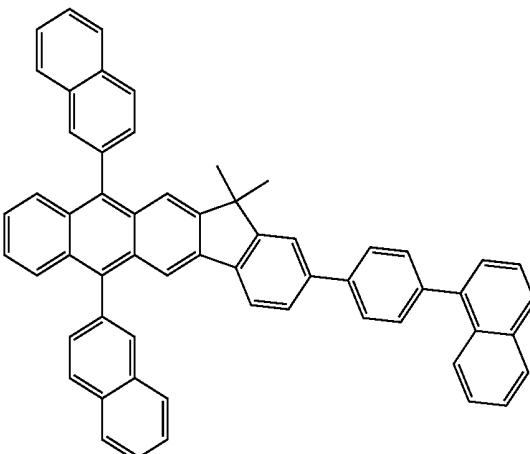
-continued


H36

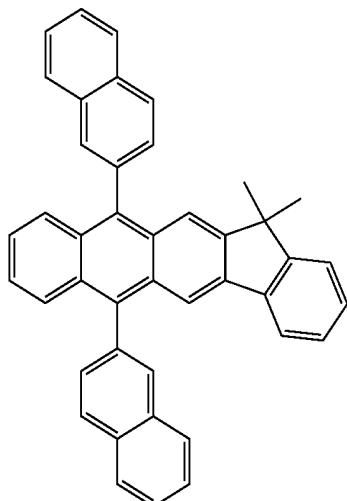
H37



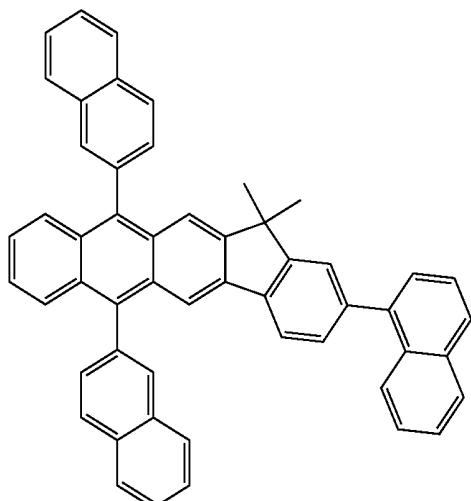
H38


-continued

H39



-continued


H42

H40

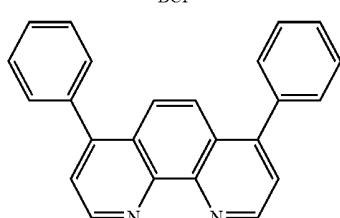
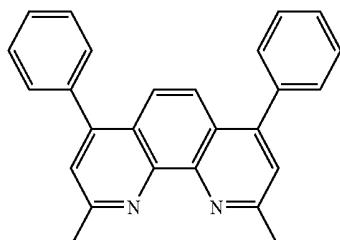
H41

[0245] When the organic light-emitting device is a full color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, and a blue emission layer. In some embodiments, due to a stack structure including a red emission layer, a green emission layer, and/or a blue emission layer, the emission layer may emit white light.

[0246] When the emission layer includes a host and a dopant, an amount of the dopant may be in a range of about 0.01 to about 15 parts by weight based on 100 parts by weight of the host, but is not limited thereto.

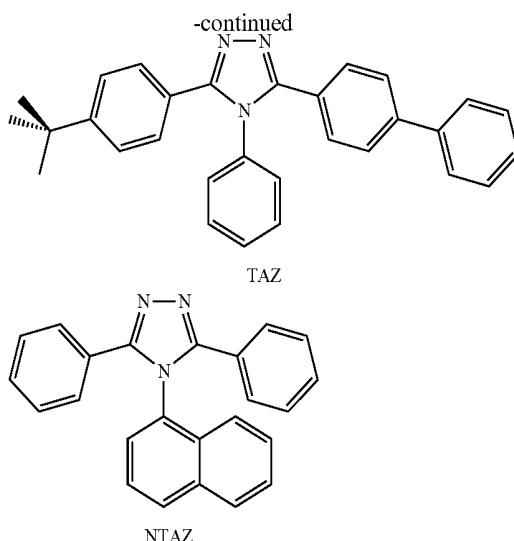
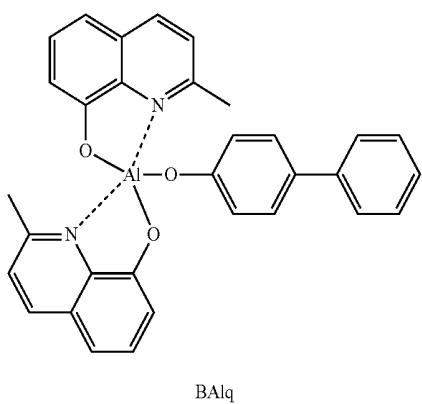
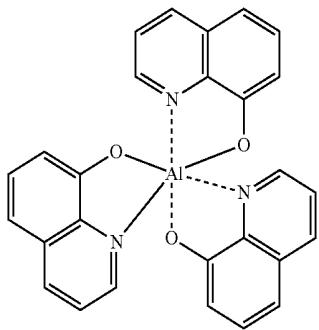
[0247] A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. While not wishing to be bound by theory, it is understood that when the thickness of the emission layer is within this range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.

[0248] Then, an electron transport region may be disposed on the emission layer.

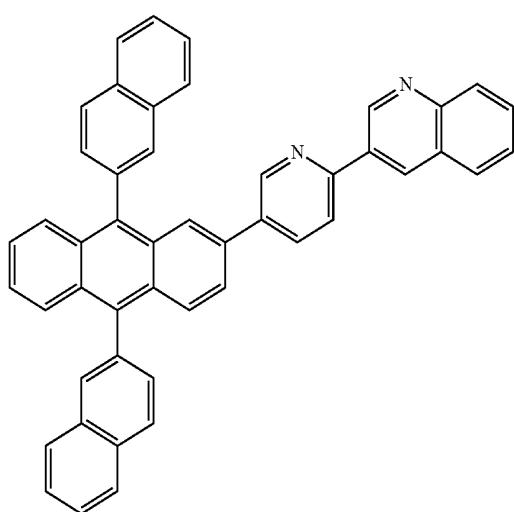
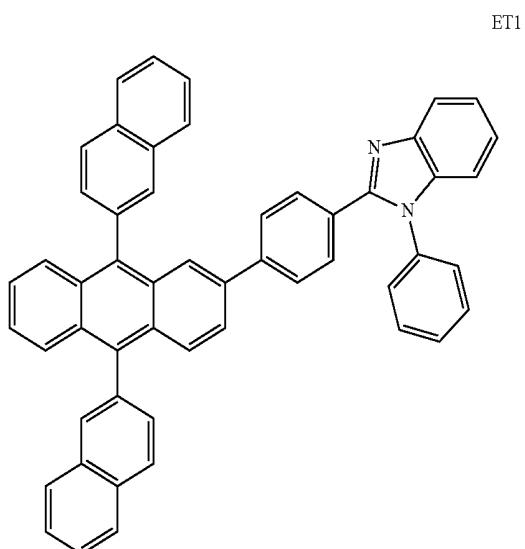


H41

[0249] The electron transport region may include at least one selected from a hole blocking layer, an electron transport layer, and an electron injection layer.

[0250] For example, the electron transport region may have a structure of hole blocking layer/electron transport layer/electron injection layer or a structure of electron transport layer/electron injection layer, but the structure of the electron transport region is not limited thereto. The electron transport layer may have a single-layered structure or a multi-layer structure including two or more different materials.

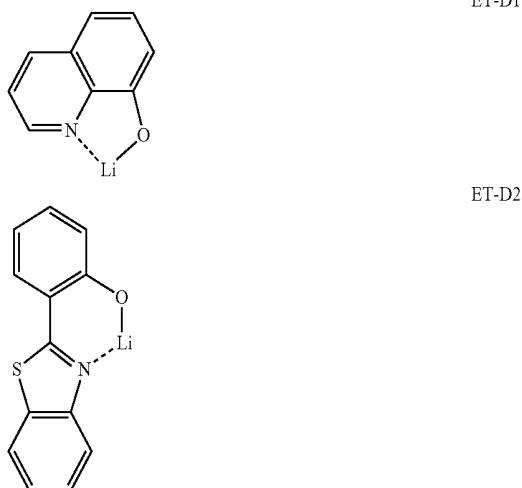



[0251] Conditions for forming the hole blocking layer, the electron transport layer, and the electron injection layer which constitute the electron transport region may be understood by referring to the conditions for forming the hole injection layer.

[0252] When the electron transport region includes a hole blocking layer, the hole blocking layer may include, for example, at least one of BCP, Bphen, and BA1q but is not limited thereto.

[0253] A thickness of the hole blocking layer may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. While not wishing to be bound by theory, it is understood that when the thickness of the hole blocking layer is within these ranges, the hole blocking layer may have improved hole blocking ability without a substantial increase in driving voltage.

[0254] The electron transport layer may further include at least one selected from BCP, Bphen, Alq₃, BAiq, TAZ, and NTAZ.


[0255] In some embodiments, the electron transport layer may include at least one of ET1 and ET2, but are not limited thereto:

[0256] A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. While not wishing to be bound by theory, it is understood that when the thickness of the electron transport layer is within the range described above, the electron transport layer may have satisfactory electron transport characteristics without a substantial increase in driving voltage.

[0257] Also, the electron transport layer may further include, in addition to the materials described above, a metal-containing material.

[0258] The metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) or ET-D2.

[0259] The electron transport region may include an electron injection layer (EIL) that promotes flow of electrons from the second electrode 19 thereinto.

[0260] The electron injection layer may include at least one selected from, LiF, NaCl, CsF, Li₂O, BaO, and LiQ.

[0261] A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. While not wishing to be bound by theory, it is understood that when the thickness of the electron injection layer is within the range described above, the electron injection layer may have satisfactory electron injection characteristics without a substantial increase in driving voltage.

[0262] The second electrode 19 is disposed on the organic layer 15. The second electrode 19 may be a cathode. A material for forming the second electrode 19 may be selected from metal, an alloy, an electrically conductive compound, and a combination thereof, which have a relatively low work function. For example, lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), or magnesium-silver (Mg—Ag) may be used as a material for forming the second electrode 19. In some embodiments, to manufacture a top emission type light-emitting device, a transmissive electrode formed using ITO or IZO may be used as the second electrode 19.

[0263] Hereinbefore, the organic light-emitting device has been described with reference to FIG. 1, but is not limited thereto.

[0264] A C₁-C₆₀ alkyl group as used herein refers to a linear or branched aliphatic saturated hydrocarbon monovalent group having 1 to 60 carbon atoms. Detailed examples thereof are a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. A C₁-C₆₀ alkylene group as used herein refers to a divalent group having the same structure as the C₁-C₆₀ alkyl group.

[0265] A C_1 - C_{60} alkoxy group as used herein refers to a monovalent group represented by $-OA_{101}$ (wherein A_{101} is the C_1 - C_{60} alkyl group). Detailed examples thereof are a methoxy group, an ethoxy group, and an isopropoxy group.

[0266] A C₂-C₆₀ alkenyl group as used herein refers to a hydrocarbon group formed by including at least one carbon-carbon double bond in the middle or at the terminal of the C₂-C₆₀ alkyl group. Detailed examples thereof are an ethenyl group, a propenyl group, and a butenyl group. A C₂-C₆₀ alkenylene group as used herein refers to a divalent group having the same structure as the C₂-C₆₀ alkenyl group.

[0267] A C_2 - C_{60} alkynyl group as used herein refers to a hydrocarbon group formed by including at least one carbon-carbon triple bond in the middle or at the terminal of the C_2 - C_{60} alkyl group. Detailed examples thereof are an ethynyl group, and a propynyl group. A C_2 - C_{60} alkynylene group as used herein refers to a divalent group having the same structure as the C_2 - C_{60} alkynyl group.

[0268] A C_3 - C_{10} cycloalkyl group as used herein refers to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms. Detailed examples thereof are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. A C_3 - C_{10} cycloalkylene group as used herein refers to a divalent group having the same structure as the C_3 - C_{10} cycloalkyl group.

[0269] A C₁-C₁₀ heterocycloalkyl group as used herein refers to a monovalent monocyclic group having at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 10 carbon atoms. Detailed examples thereof are a tetrahydrofuryl group, and a tetrahydrothiophenyl group. A C₁-C₁₀ heterocycloalkylene group as used herein refers to a divalent group having the same structure as the C₁-C₁₀ heterocycloalkyl group.

[0270] A C_3 - C_{10} cycloalkenyl group as used herein refers to a monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof, and which is not aromatic. Detailed examples thereof are a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. A C_3 - C_{10} cycloalkenylene group as used herein refers to a divalent group having the same structure as the C_3 - C_{10} cycloalkenyl group.

[0271] A C_1 - C_{10} heterocycloalkenyl group as used herein refers to a monovalent monocyclic group that has at least one hetero atom selected from N, O, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Detailed examples of the C_1 - C_{10} heterocycloalkenyl group are a 2,3-dihydrofuranyl group and a 2,3-dihydrothiophenyl group. A C_1 - C_{10} heterocycloalkenylene group as used herein refers to a divalent group having the same structure as the C_1 - C_{10} heterocycloalkenyl group.

[0272] A C_6 - C_{60} aryl group as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C_6 - C_{60} arylene group as used herein refers to a divalent group having a carbocyclic

aromatic system having 6 to 60 carbon atoms. Detailed examples of the $C_6\text{-}C_{60}$ aryl group are a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the $C_6\text{-}C_{60}$ aryl group and the $C_6\text{-}C_{60}$ arylene group each include two or more rings, the rings may be fused to each other.

[0273] A $C_1\text{-}C_{60}$ heteroaryl group as used herein refers to a monovalent group having an aromatic system that has at least one hetero atom selected from N, O, P, and S as a ring-forming atom, and 1 to 60 carbon atoms. A $C_1\text{-}C_{60}$ heteroarylene group as used herein refers to a divalent group having a carbocyclic aromatic system that has at least one hetero atom selected from N, O, P, and S as a ring-forming atom, and 1 to 60 carbon atoms. Examples of the $C_1\text{-}C_{60}$ heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the $C_1\text{-}C_{60}$ heteroaryl group and the $C_1\text{-}C_{60}$ heteroarylene group each include two or more rings, the rings may be fused to each other.

[0274] A $C_6\text{-}C_{60}$ aryloxy group as used herein indicates $-\text{OA}_{102}$ (wherein A_{102} is the $C_6\text{-}C_{60}$ aryl group), a $C_6\text{-}C_{60}$ arylthio group as used herein indicates $-\text{SA}_{103}$ (wherein A_{103} is the $C_6\text{-}C_{60}$ aryl group), and a $C_7\text{-}C_{60}$ arylalkyl group as used herein indicates $-\text{A}_{104}\text{A}_{105}$ (wherein A_{104} is the $C_6\text{-}C_{59}$ aryl group and A_{105} is the $C_1\text{-}C_{53}$ alkyl group).

[0275] A $C_2\text{-}C_{60}$ heteroaryloxy group as used herein indicates $-\text{OA}_{106}$ (wherein A_{106} is the $C_2\text{-}C_{60}$ heteroaryl group), a $C_2\text{-}C_{60}$ heteroarylthio group as used herein indicates $-\text{SA}_{107}$ (wherein A_{107} is the $C_2\text{-}C_{60}$ heteroaryl group), and a $C_3\text{-}C_{60}$ heteroarylalkyl group as used herein indicates $-\text{A}_{108}\text{A}_{109}$ (wherein A_{108} is the $C_2\text{-}C_{59}$ heteroaryl group and A_{109} is the $C_1\text{-}C_{58}$ alkyl group).

[0276] A monovalent non-aromatic condensed polycyclic group as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) that has two or more rings condensed to each other, only carbon atoms as a ring forming atom, and which is non-aromatic in the entire molecular structure. A detailed example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. A divalent non-aromatic condensed polycyclic group as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.

[0277] A monovalent non-aromatic condensed heteropolycyclic group as used herein refers to a monovalent group (for example, having 2 to 60 carbon atoms) that has two or more rings condensed to each other, has a heteroatom selected from N, O, P, and S, other than carbon atoms, as a ring forming atom, and which is non-aromatic in the entire molecular structure. An example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. A divalent non-aromatic condensed heteropolycyclic group as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.

[0278] At least one of substituents of the substituted $C_1\text{-}C_{60}$ alkyl group, substituted $C_2\text{-}C_{60}$ alkenyl group, substituted $C_2\text{-}C_{60}$ alkynyl group, substituted $C_1\text{-}C_{60}$ alkoxy group, substituted $C_3\text{-}C_{10}$ cycloalkyl group, substituted $C_1\text{-}C_{10}$ heterocycloalkyl group, substituted $C_3\text{-}C_{10}$ cycloalkenyl group, substituted $C_1\text{-}C_{10}$ heterocycloalkenyl group, substituted $C_6\text{-}C_{60}$ aryl group, substituted $C_6\text{-}C_{60}$ aryloxy group, substituted $C_6\text{-}C_{60}$ arylthio group, substituted $C_7\text{-}C_{60}$ arylalkyl group, substituted $C_1\text{-}C_{60}$ heteroaryl group, substituted $C_2\text{-}C_{60}$ heteroaryloxy group, substituted $C_2\text{-}C_{60}$ heteroarylthio group, substituted $C_3\text{-}C_{60}$ heteroarylalkyl group, substituted monovalent non-aromatic condensed polycyclic group and substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:

[0279] a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $C_1\text{-}C_{60}$ alkyl group, a $C_2\text{-}C_{60}$ alkenyl group, a $C_2\text{-}C_{60}$ alkynyl group, and a $C_1\text{-}C_{60}$ alkoxy group;

[0280] a $C_1\text{-}C_{60}$ alkyl group, a $C_2\text{-}C_{60}$ alkenyl group, a $C_2\text{-}C_{60}$ alkynyl group, and a $C_1\text{-}C_{60}$ alkoxy group, each substituted with at least one selected from a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $C_3\text{-}C_{10}$ cycloalkyl group, a $C_1\text{-}C_{10}$ heterocycloalkyl group, a $C_3\text{-}C_{10}$ cycloalkenyl group, a $C_1\text{-}C_{10}$ heterocycloalkenyl group, a $C_6\text{-}C_{60}$ aryl group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{60}$ arylthio group, a $C_7\text{-}C_{60}$ arylalkyl group, a $C_1\text{-}C_{60}$ heteroaryl group, a $C_2\text{-}C_{60}$ heteroaryloxy group, a $C_2\text{-}C_{60}$ heteroarylthio group, a $C_3\text{-}C_{60}$ heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_{11})(\text{Q}_{12})$, $-\text{B}(\text{Q}_{13})(\text{Q}_{14})$, and $-\text{P}(\text{=O})(\text{Q}_{15})(\text{Q}_{16})$;

[0281] a $C_3\text{-}C_{10}$ cycloalkyl group, a $C_1\text{-}C_{10}$ heterocycloalkyl group, a $C_3\text{-}C_{10}$ cycloalkenyl group, a $C_1\text{-}C_{10}$ heterocycloalkenyl group, a $C_6\text{-}C_{60}$ aryl group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{60}$ arylthio group, a $C_7\text{-}C_{60}$ arylalkyl group, a $C_1\text{-}C_{60}$ heteroaryl group, a $C_2\text{-}C_{60}$ heteroaryloxy group, a $C_2\text{-}C_{60}$ heteroarylthio group, a $C_3\text{-}C_{60}$ heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

[0282] a $C_3\text{-}C_{10}$ cycloalkyl group, a $C_1\text{-}C_{10}$ heterocycloalkyl group, a $C_3\text{-}C_{10}$ cycloalkenyl group, a $C_1\text{-}C_{10}$ heterocycloalkenyl group, a $C_6\text{-}C_{60}$ aryl group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{60}$ arylthio group, a $C_7\text{-}C_{60}$ arylalkyl group, a $C_1\text{-}C_{60}$ heteroaryl group, a $C_2\text{-}C_{60}$ heteroaryloxy group, a $C_2\text{-}C_{60}$ heteroarylthio group, a $C_3\text{-}C_{60}$ heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

clic group, and a monovalent non-aromatic condensed heteropolyyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, a C₁-C₆₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₁-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₁-C₁₀ heterocycloalkenyl group, a C₆-C₆₀ aryl group, a C₆-C₆₀ aryloxy group, a C₆-C₆₀ arylthio group, a C₇-C₆₀ arylalkyl group, a C₁-C₆₀ heteroaryl group, a C₂-C₆₀ heteroaryloxy group, a C₂-C₆₀ heteroarylthio group, a C₃-C₆₀ heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolyyclic group, —N(Q₂₁)(Q₂₂), —B(Q₂₃)(Q₂₄), and —P(=O)(Q₂₅)(Q₂₆), and

[0283] —N(Q₃₁)(Q₃₂), —B(Q₃₃)(Q₃₄), and —P(=O)(Q₃₅)(Q₃₆);

[0284] wherein Q₁ to Q₆, Q₁₁ to Q₁₆, Q₂₁ to Q₂₆, Q₃₁ to Q₃₆ and Q₅₁ to Q₅₃ may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubstituted C₆-C₆₀ aryloxy group, a substituted or unsubstituted C₆-C₆₀ arylthio group, a C₇-C₆₀ arylalkyl group, a substituted or unsubstituted C₁-C₆₀ heteroaryl group, a C₂-C₆₀ heteroaryloxy group, a C₂-C₆₀ heteroarylthio group, a C₃-C₆₀ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group and a substituted or unsubstituted monovalent non-aromatic condensed heteropolyyclic group.

[0285] When a group containing a specified number of carbon atoms is substituted with any of the groups listed in the preceding paragraph, the number of carbon atoms in the resulting “substituted” group is defined as the sum of the carbon atoms contained in the original (unsubstituted) group and the carbon atoms (if any) contained in the substituent. For example, when the term “substituted C₁-C₆₀ alkyl” refers to a C₁-C₆₀ alkyl group substituted with C₆-C₆₀ aryl group, the total number of carbon atoms in the resulting aryl substituted alkyl group is C₇-C₁₂₀.

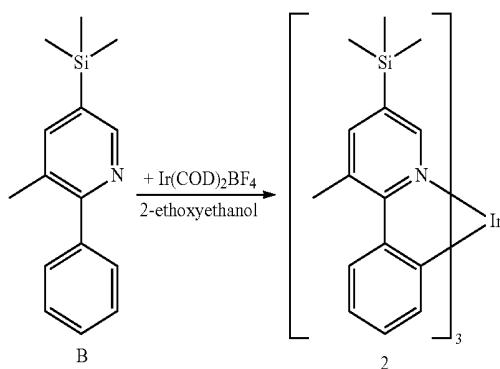

[0286] Hereinafter, a compound and an organic light-emitting device according to embodiments are described in detail with reference to Synthesis Example and Examples. However, the organic light-emitting device is not limited thereto. The wording “B was used instead of A” used in

describing Synthesis Examples means that an amount of A used was identical to an amount of B used, in terms of a molar equivalent.

EXAMPLE

Synthesis Example 1: Synthesis of Compound 1

[0287]

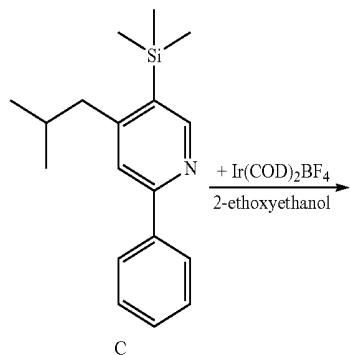


[0288] 50 milliliters (mL) of 2-ethoxyethanol was mixed with Compound A (5.23 grams (g), 21.7 millimoles (mmol)) and Ir(COD)₂BF₄ (3.25 g, 6.6 mmol), and the mixture was stirred at a temperature of 120° C. for 18 hours to carry out a reaction. The resulting was cooled and filtered to obtain a solid, which was then subjected to column chromatography using methylene chloride (MC) and hexane, thereby obtaining 1.9 g (32%) of Compound 1. The identity of the obtained compound was confirmed by Mass and HPLC analysis.

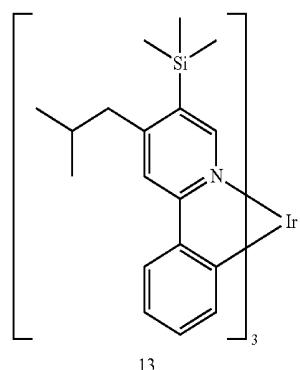
[0289] HRMS (MALDI) calcd for C₄₅H₅₄IrN₃Si₃: m/z 913.3255, Found: 913.3251.

Synthesis Example 2: Synthesis of Compound 2

[0290]



[0291] 1.1 g (18%) of Compound 2 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound B (5.23 g, 21.7 mmol) was used instead of Compound A.

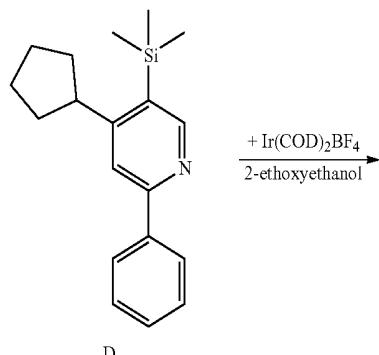

[0292] HRMS (MALDI) calcd for C₄₅H₅₄IrN₃Si₃: m/z 913.3255, Found: 913.3257.

Synthesis Example 3: Synthesis of Compound 13

[0293]

2-ethoxyethanol

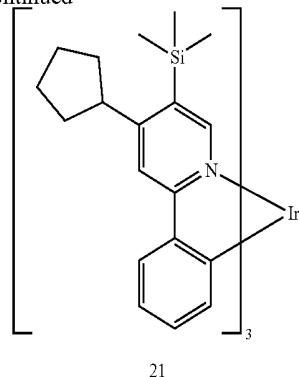
+ Ir(COD)₂BF₄


13

[0294] 2.2 g (37%) of Compound 13 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound C (5.40 g, 19.1 mmol) was used instead of Compound A.

[0295] HRMS(MALDI) calcd for C₅₄H₇₂IrN₃Si₃: m/z 1039.4663, Found: 1039.4660.

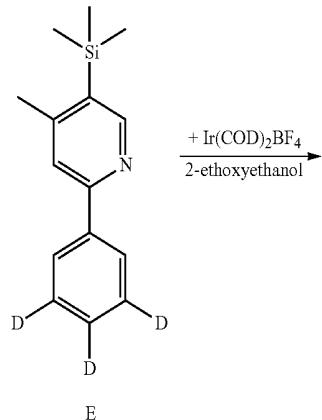
Synthesis Example 4: Synthesis of Compound 21


[0296]

2-ethoxyethanol

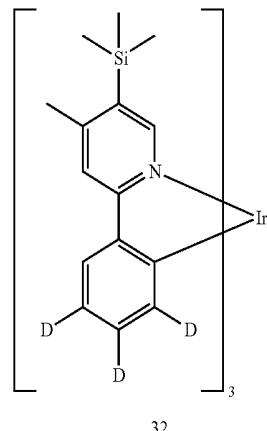
+ Ir(COD)₂BF₄

-continued


21

[0297] 2.2 g (37%) of Compound 21 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound D (5.40 g, 19.1 mmol) was used instead of Compound A.

[0298] HRMS (MALDI) calcd for C₅₇H₇₂IrN₃Si₃: m/z 1075.4663, Found: 1075.4666.

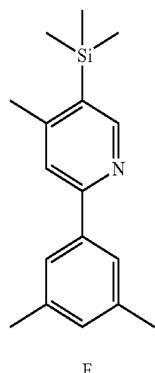

Synthesis Example 5: Synthesis of Compound 32

[0299]

E

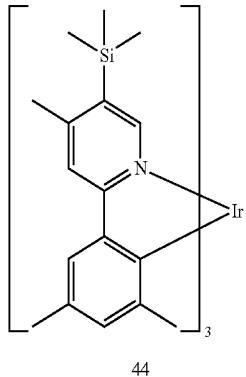
2-ethoxyethanol

+ Ir(COD)₂BF₄


32

[0300] 2.5 g (42%) of Compound 32 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound E (5.27 g, 21.4 mmol) was used instead of Compound A.

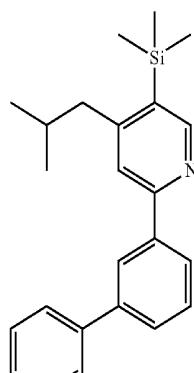
[0301] HRMS (MALDI) calcd for C₄₅H₄₅D₉IrN₃Si₃: m/z 922.3820, Found: 922.2817.


Synthesis Example 6: Synthesis of Compound 44

[0302]

F

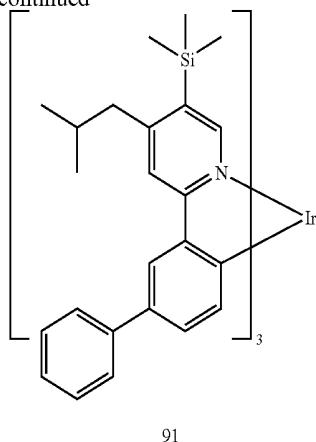
+ Ir(COD)₂BF₄
2-ethoxyethanol


44

[0303] 1.3 g (22%) of Compound 44 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound F (5.35 g, 19.9 mmol) was used instead of Compound A.

[0304] HRMS (MALDI) calcd for C₅₁H₆₆IrN₃Si₃: m/z 997.4194, Found: 997.4191.

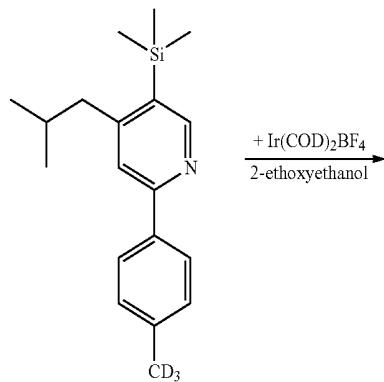
Synthesis Example 7: Synthesis of Compound 91


[0305]

G

+ Ir(COD)₂BF₄
2-ethoxyethanol

-continued


91

[0306] 1.2 g (20%) of Compound 91 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound G (5.62 g, 15.6 mmol) was used instead of Compound A.

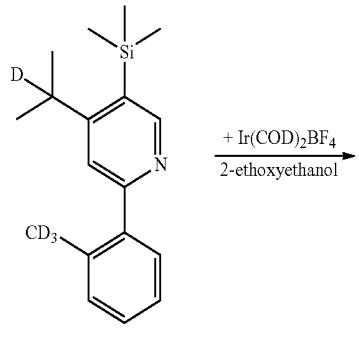
[0307] HRMS (MALDI) calcd for C₇₂H₈₄IrN₃Si₃: m/z 1267.5602, Found: 1267.5607.

Synthesis Example 8: Synthesis of Compound 123

[0308]

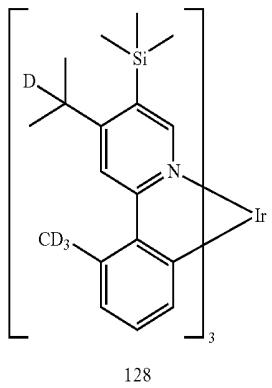
H

+ Ir(COD)₂BF₄
2-ethoxyethanol


123

[0309] 2.1 g (42%) of Compound 123 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound H (4.55 g, 15.1 mmol) was used instead of Compound A.

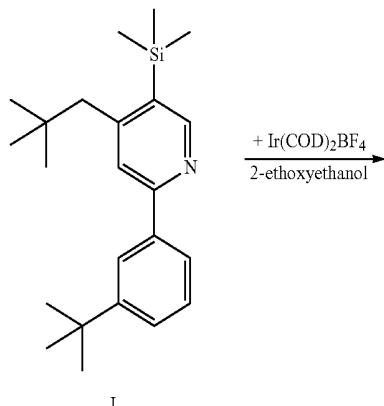
[0310] HRMS(MALDI) calcd for C₅₇H₆₉D₉IrN₃Si₃: m/z 1090.5698, Found: 1090.5692.


Synthesis Example 9: Synthesis of Compound 128

[0311]

I

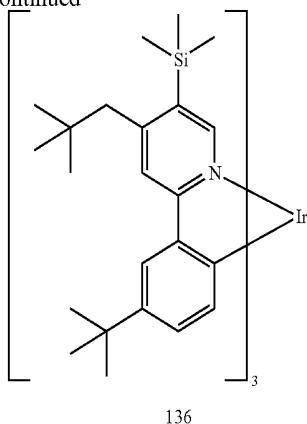
+ Ir(COD)₂BF₄
2-ethoxyethanol


128

[0312] 1.1 g (37%) of Compound 128 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound I (2.7 g, 9.4 mmol) was used instead of Compound A.

[0313] HRMS(MALDI) calcd for C₅₄H₆₀D₁₂IrN₃Si₃: m/z 1051.5416, Found: 1051.5421.

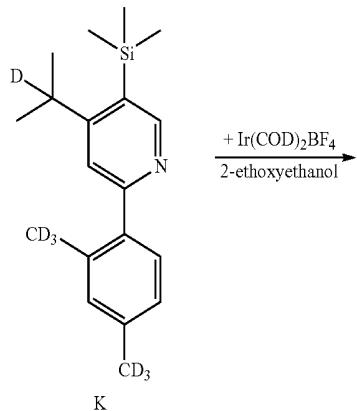
Synthesis Example 10: Synthesis of Compound 136


[0314]

J

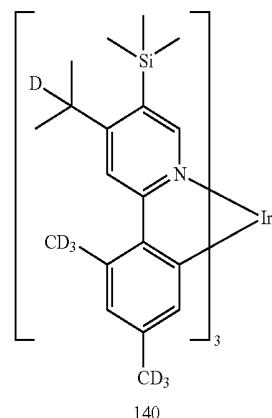
+ Ir(COD)₂BF₄
2-ethoxyethanol

-continued


136

[0315] 1.2 g (30%) of Compound 136 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound J (3.7 g, 10.6 mmol) was used instead of Compound A.

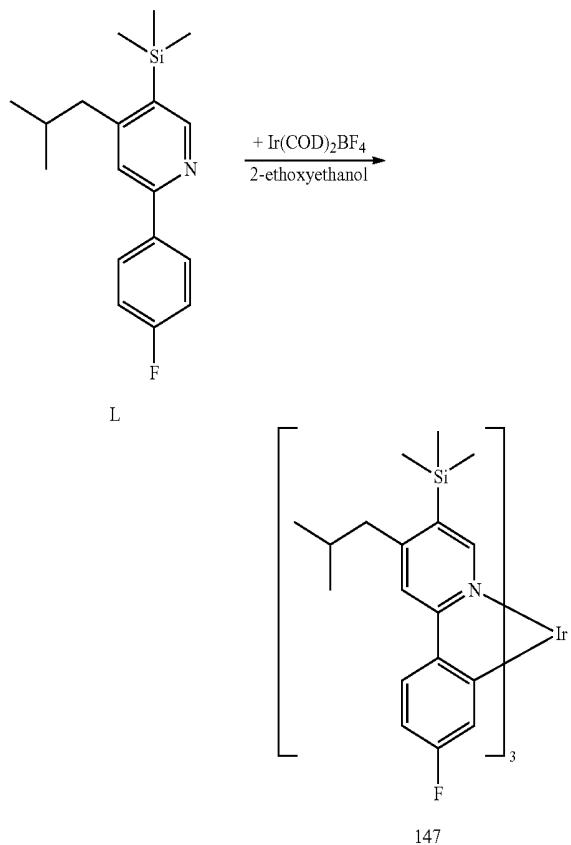
[0316] HRMS(MALDI) calcd for C₆₉H₁₀₂IrN₃Si₃: m/z 1249.7011, Found: 1249.7005.


Synthesis Example 11: Synthesis of Compound 140

[0317]

K

+ Ir(COD)₂BF₄
2-ethoxyethanol

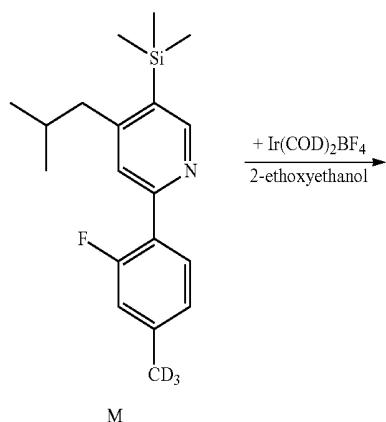

140

[0318] 0.7 g (23%) of Compound 140 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound K (2.7 g, 9.0 mmol) was used instead of Compound A.

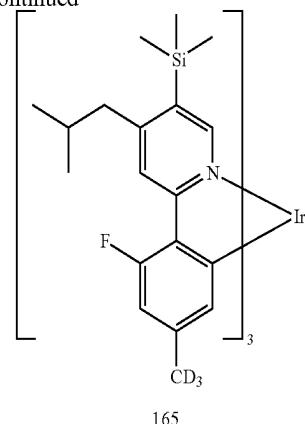
[0319] HRMS(MALDI) calcd for C₅₇H₅₇D₂₁IrN₃Si₃: m/z 1102.6451, Found: 1102.6458.

Synthesis Example 12: Synthesis of Compound 147

[0320]



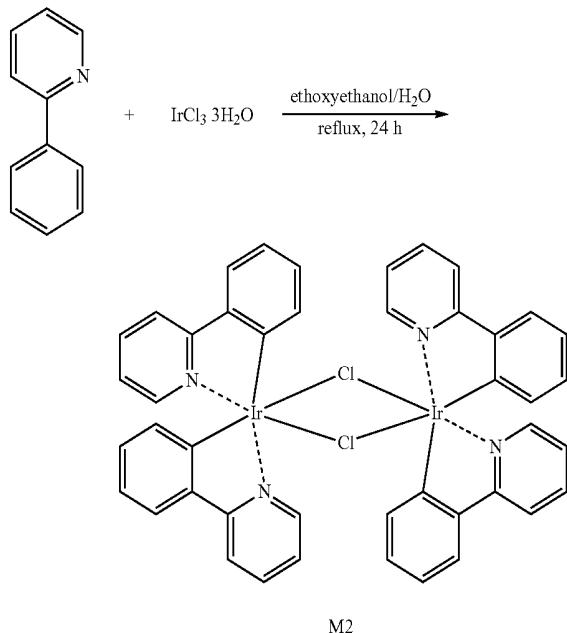
[0321] 2.5 g (50%) of Compound 147 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound L (4.5 g, 15.1 mmol) was used instead of Compound A.


[0322] HRMS(MALDI) calcd for $C_{54}H_{69}F_3IrN_3Si_3$: m/z 1093.4381, Found: 1093.4377.

Synthesis Example 13: Synthesis of Compound 165

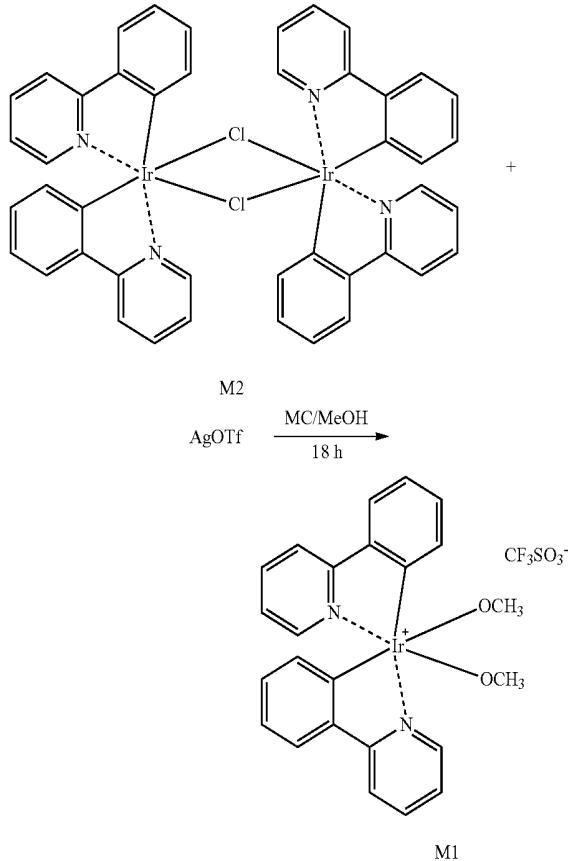
[0323]

-continued

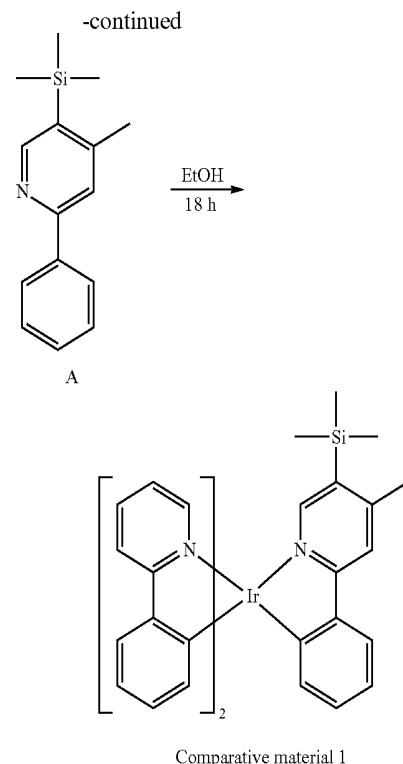
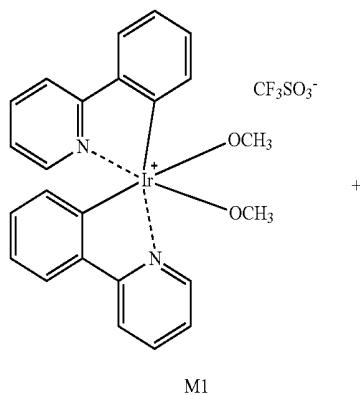


[0324] 1.5 g (38%) of Compound 165 was obtained in the same manner as Compound 1 in Synthesis Example 1, except that Compound M (3.7 g, 11.5 mmol) was used instead of Compound A.

[0325] HRMS(MALDI) calcd for $C_{57}H_{66}D_9F_3IrN_3Si_3$: m/z 1144.5415, Found: 1144.5410.


Comparative Synthesis Example 1: Synthesis of Comparative Material 1

[0326] Synthesis of Compound M2



[0327] 210 mL of ethoxyethanol and 70 mL of distilled water were mixed with 2-phenylpyridine (14.66 g, 94.44 mmol) and iridium chloride (14.8 g, 41.97 mmol), and the mixture was stirred for 24 hours under reflux to carry out a reaction, and cooled to room temperature, thereby generating a solid. The solid was separated by filtration, and thoroughly, sequentially washed with water, methanol, and hexane in the stated order. The resultant solid was dried in a vacuum oven to obtain 20.2 g (90%) of Compound M2.

[0328] Synthesis of Compound M1

[0329] 60 mL of MC was mixed with Compound M2 (4.5 g, 4.20 mmol), and AgOTf (2.16 g, 8.41 mmol) dissolved in 20 mL of methanol was added thereto. Thereafter, while light was blocked by using an aluminum foil, the resultant mixture was stirred at room temperature for 18 hours to carry out a reaction, and the solid generated therefrom was removed by celite filtration. A filtrate was subjected to reduced pressure to obtain a solid (Compound M1), which was used in the following reaction without additional purification.

[0330] Synthesis of Comparative Material 1

[0331] Compound M1 (6 g, 8.41 mmol) and Compound A (3.0 g, 12.61 mmol) were mixed with 90 mL of ethanol, and the mixture was stirred for 18 hours under reflux to carry out a reaction. The temperature was subsequently reduced. The resultant mixture was filtered to obtain a solid, which was then thoroughly washed with ethanol and hexane. The resulting solid was subjected to column chromatography using MC and hexane, thereby obtaining 2.1 g (38%) of Comparative material 1. The identity of the obtained compound was confirmed by Mass and HPLC analysis.

Example 1

[0332] An ITO glass substrate was cut to a size of 50 millimeters (mm) \times 50 mm \times 0.5 mm, and sonicated in acetone isopropyl alcohol and pure water, each for 15 minutes, and subsequently washed by exposure to UV ozone for 30 minutes.

[0333] Then, m-MTDATA was deposited on an ITO electrode (anode) on the glass substrate at a deposition speed of 1 \AA/sec to form a hole injection layer having a thickness of 600 \AA , and α -NPD was deposited on the hole injection layer at a deposition speed of 1 \AA/sec to form a hole transport layer having a thickness of 250 \AA .

[0334] Compound 1 (dopant) and CBP (host) were co-deposited on the hole transport layer at deposition speeds of 0.1 \AA/sec and 1 \AA/sec , respectively, to form an emission layer having a thickness of 400 \AA .

[0335] BAQ was deposited on the emission layer at a deposition speed of 1 \AA/sec to form a hole blocking layer having a thickness of 50 \AA , and Alq_3 was deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 \AA . Subsequently, LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 \AA , and Al was vacuum-deposited on the electron injection layer to form a

second electrode(cathode) having a thickness of 1,200 Å, thereby completing manufacture of an organic light-emitting device having the structure of ITO/m-MTDATA (600 Å)/α-NPD (250 Å)/CBP+10% (Compound 1) (400 Å)/BAIq (50 Å)/Alq₃ (300 Å)/LiF(10 Å)/Al (1,200 Å).

Examples 2 to 13 and Comparative Example 1

[0336] Organic light-emitting devices were manufactured in the same manner as in Example 1, except that in forming an emission layer, compounds shown in Table 2 were used instead of Compound 1, as a dopant.

Evaluation Example 1: Evaluation on Characteristics of Organic Light-Emitting Device

[0337] The organic light-emitting devices manufactured according to Examples 1 to 13 and Comparative Example 1 were evaluated in terms of driving voltage, efficiency, power, color purity, quantum efficiency, and lifespan (T₉₅). Results thereof are shown in Table 2. This evaluation was performed using a current-voltage meter (Keithley 2400) and a brightness meter (Minolta Cs-1000A), and the lifespan (T₉₅) (at 6,000 nit) was evaluated by measuring the amount of time that elapsed until brightness was reduced to 95% of the initial brightness of 100%.

TABLE 2

	Dopant	Driving voltage (V)	Efficiency (cd/A)	Power (lm/W)	ClEx	ClEy	Quantum efficiency (%)	Lifespan (hr) (T ₉₅)
Example 1	Compound 1	5.4	54.4	31.6	0.332	0.668	18	175
Example 2	Compound 2	5.2	51.0	30.8	0.360	0.594	18	195
Example 3	Compound 13	5.3	56.9	33.7	0.328	0.671	19	350
Example 4	Compound 21	5.1	58.0	35.7	0.325	0.670	19	315
Example 5	Compound 32	5.3	50.3	29.8	0.370	0.665	18	150
Example 6	Compound 44	5.3	50.6	30.0	0.365	0.670	18	164
Example 7	Compound 91	5.4	53.4	31.1	0.340	0.668	19	235
Example 8	Compound 123	5.3	57.8	34.3	0.323	0.672	19	250
Example 9	Compound 128	5.2	58.8	35.5	0.328	0.668	19	284
Example 10	Compound 136	5.4	54.5	31.7	0.338	0.665	19	220
Example 11	Compound 140	5.2	59.2	35.8	0.318	0.673	19	330
Example 12	Compound 147	5.4	50.2	29.2	0.312	0.675	18	160
Example 13	Compound 165	5.3	53.7	31.8	0.325	0.668	18	185
Comparative Example 1	Comparative material 1	5.3	48.5	28.7	0.344	0.604	18	135

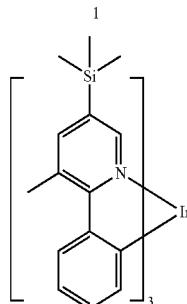
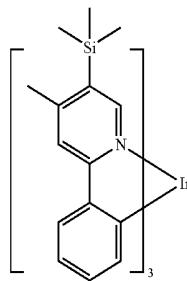



TABLE 2-continued

Dopant	Driving voltage (V)	Efficiency (cd/A)	Power (lm/W)	Quantum efficiency ClEx ClEy (%)	Lifespan (hr) (T ₉₅)
	13				
	21				
	32				
	44				

TABLE 2-continued

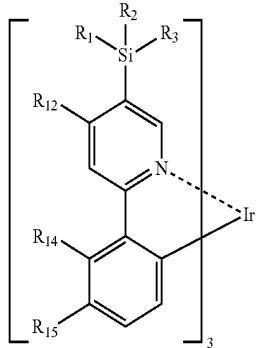
Dopant	Driving voltage (V)	Efficiency (cd/A)	Power (lm/W)	Quantum efficiency ClEx	Lifespan (hr) ClEy (%) (T ₉₅)
	91				
	123				
	128				
	136				

TABLE 2-continued

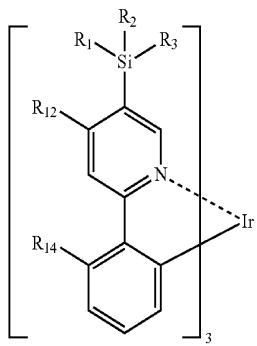
Dopant	Driving voltage (V)	Efficiency (cd/A)	Power (lm/W)	ClEx	ClEy	Quantum efficiency (%)	Lifespan (hr) (T ₉₅)
	140						
	147						
	165						

[0338] From Table 2, it can be understood that the organic light-emitting devices of Examples 1 to 8 had a comparable driving voltage, higher efficiency, higher power, higher color purity, comparable quantum efficiency, and longer lifetime than the organic light-emitting device of Comparative Example 1.

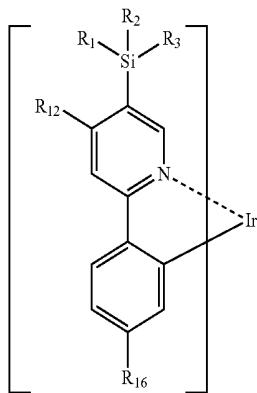
[0339] Organometallic compounds according to the present embodiments have excellent electric characteristics and thermal stability. Accordingly, an organic light-emitting device including such organometallic compounds may have excellent driving voltage, current density, efficiency, power, color purity, and lifespan characteristics.

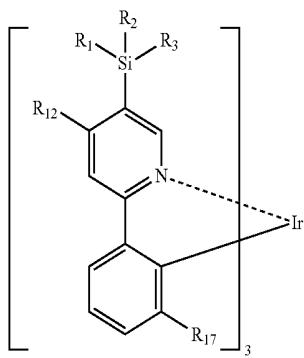

[0340] It should be understood that the exemplary embodiments described therein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.

What is claimed is:

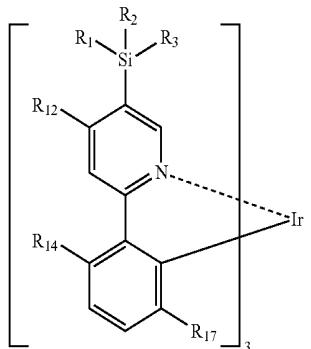

1. An organometallic compound represented by Formulae 1-2, 1-4 to 1-9, 1-11, 1-13 to 1-16 and 1-18 to 1-108:

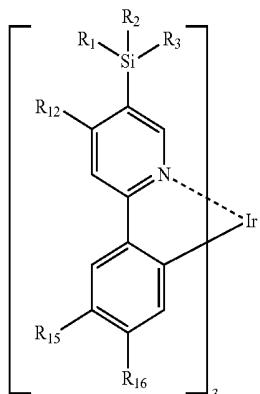
-continued

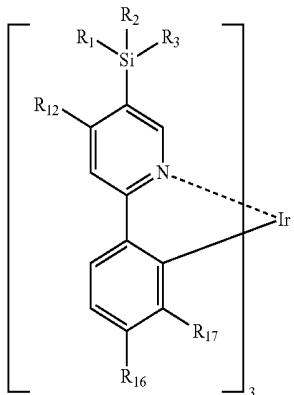

Formula 1-6


Formula 1-2

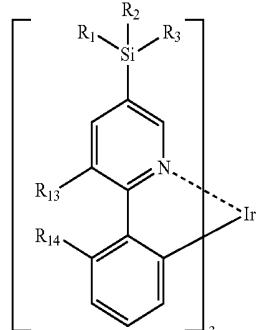
Formula 1-4


Formula 1-5

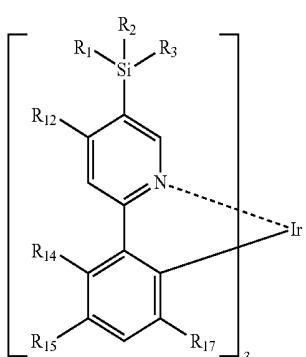

Formula 1-7


Formula 1-8

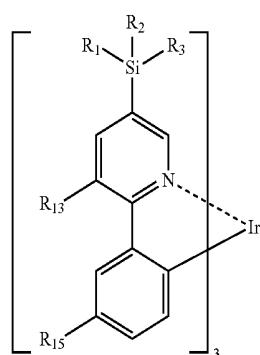
Formula 1-11

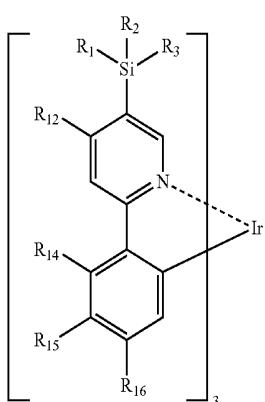


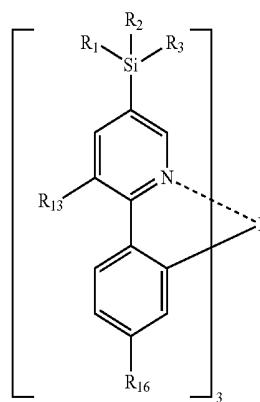
-continued

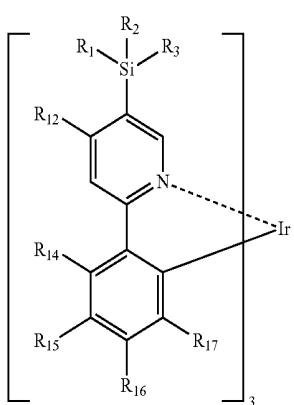


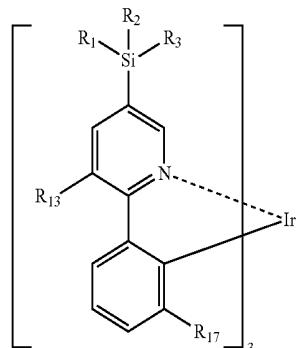
Formula 1-13


-continued

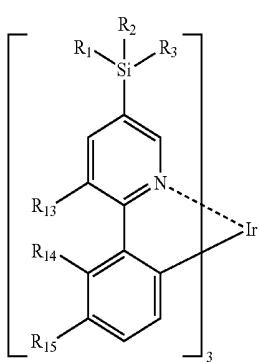

Formula 1-18


Formula 1-14

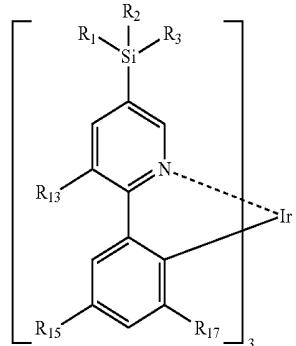

Formula 1-19


Formula 1-15

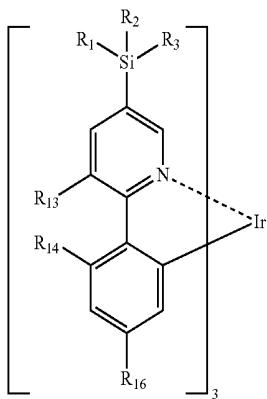
Formula 1-20



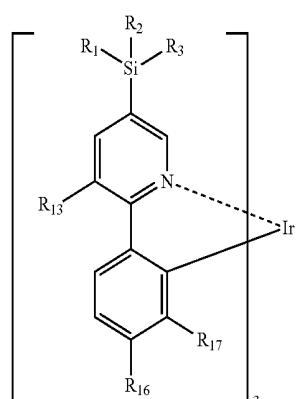
Formula 1-16

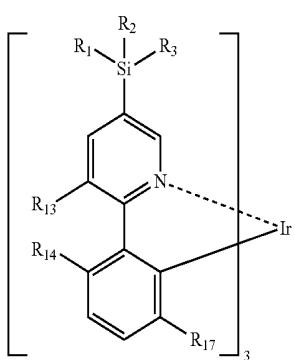

Formula 1-21

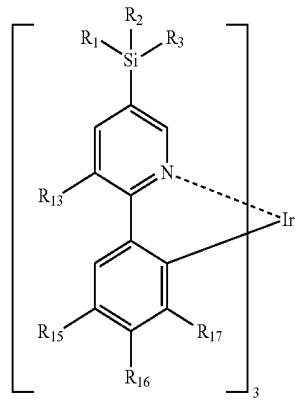
-continued

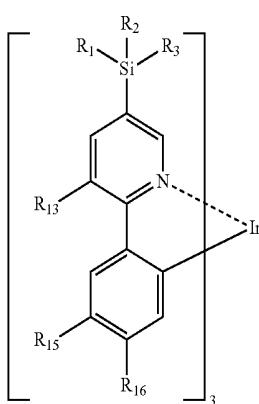


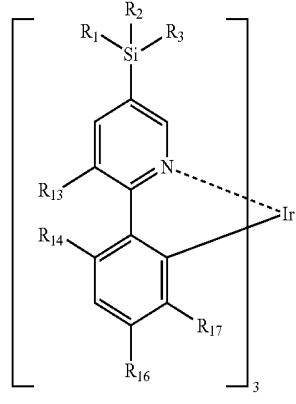
Formula 1-22


-continued

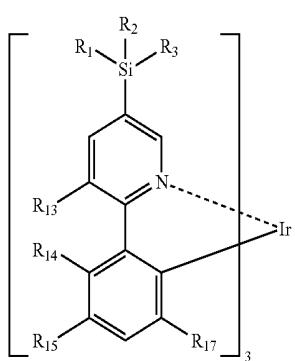

Formula 1-26


Formula 1-23

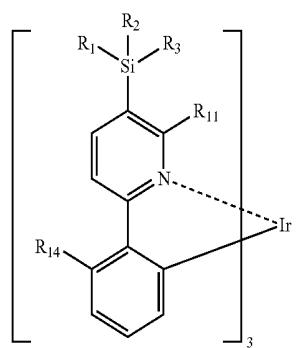

Formula 1-27


Formula 1-24

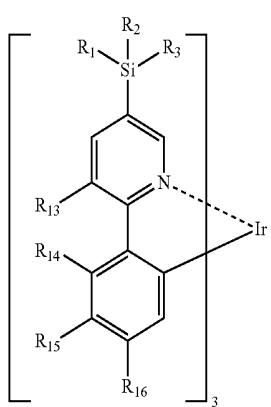
Formula 1-28



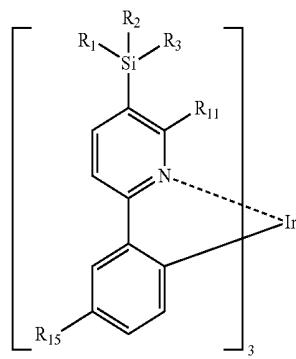
Formula 1-25

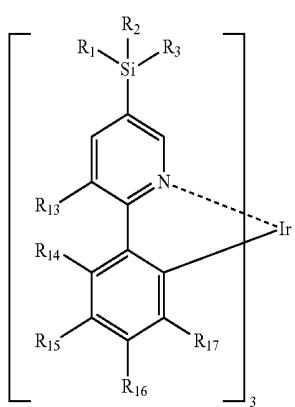

Formula 1-29

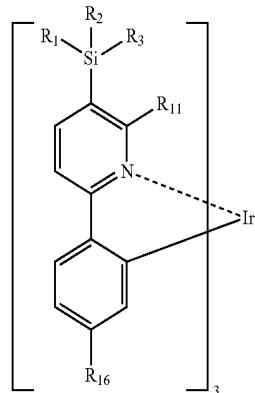
-continued

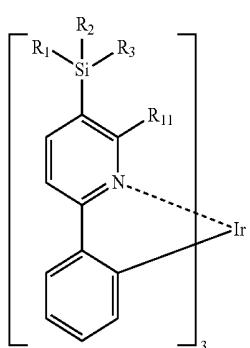


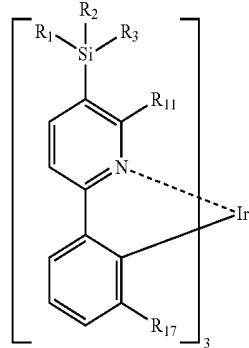
Formula 1-30


-continued

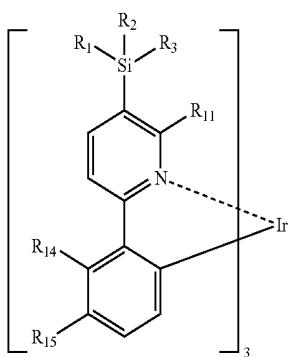

Formula 1-34


Formula 1-31

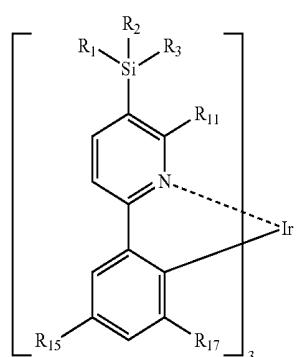

Formula 1-35


Formula 1-32

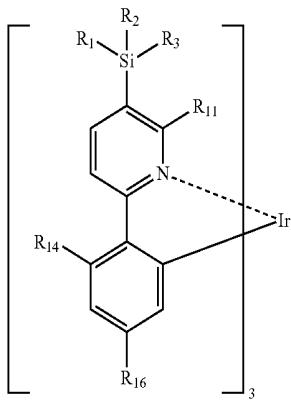
Formula 1-36



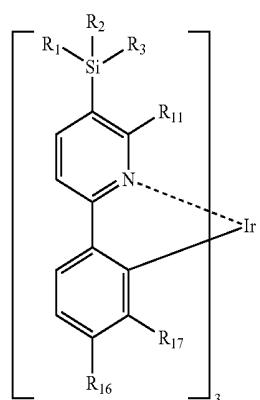
Formula 1-33

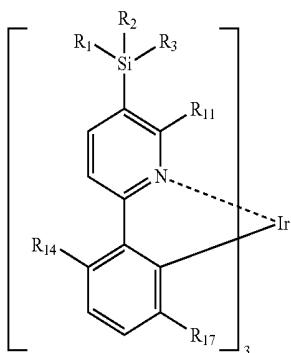

Formula 1-37

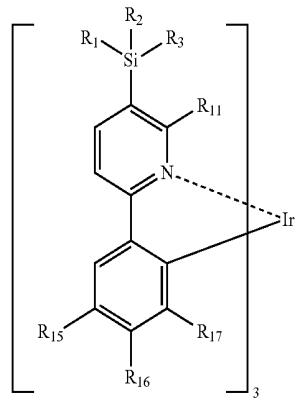
-continued

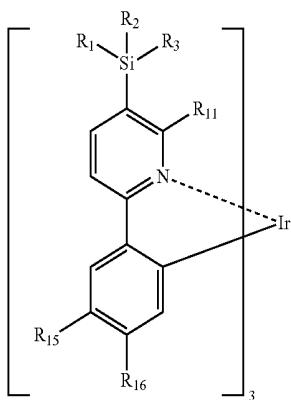


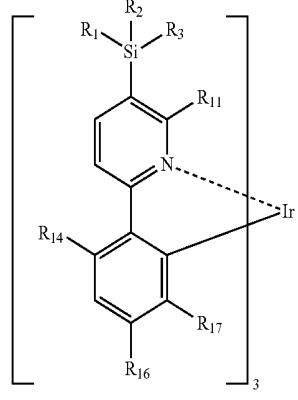
Formula 1-38


-continued

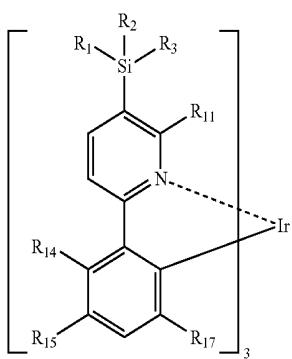

Formula 1-42


Formula 1-39

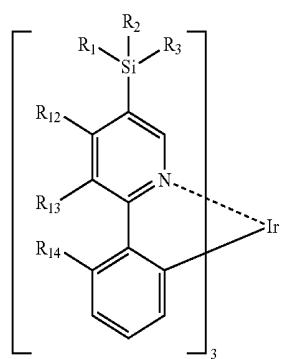

Formula 1-43


Formula 1-40

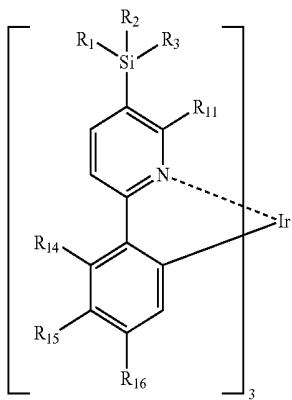
Formula 1-44



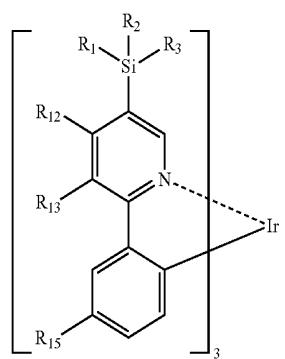
Formula 1-41

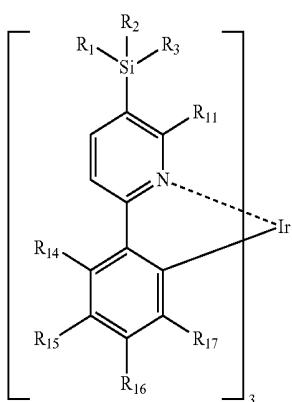

Formula 1-45

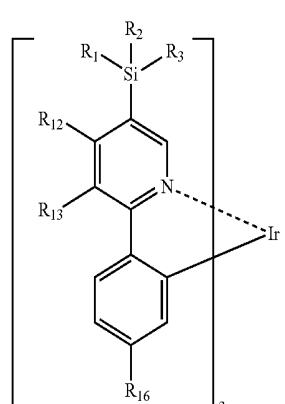
-continued

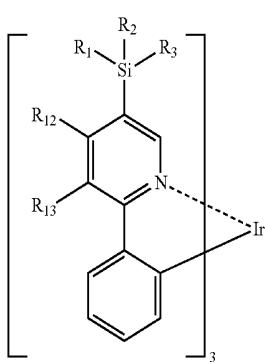


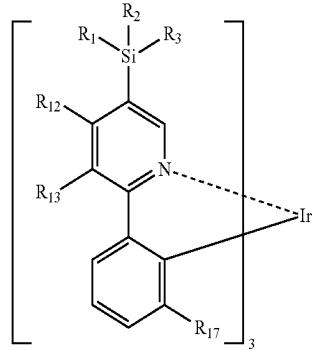
Formula 1-46


-continued

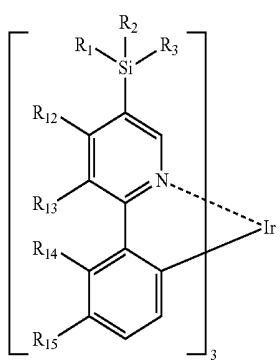

Formula 1-50


Formula 1-47

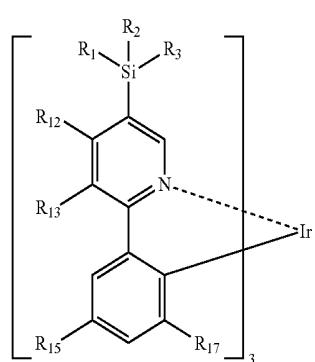

Formula 1-51


Formula 1-48

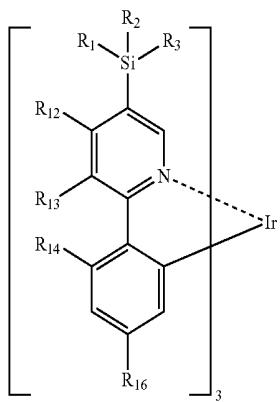
Formula 1-52



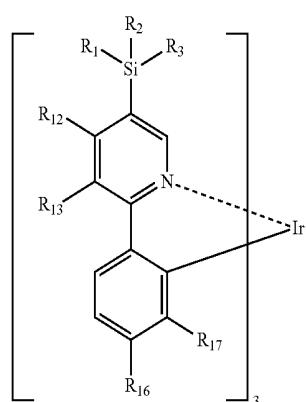
Formula 1-49

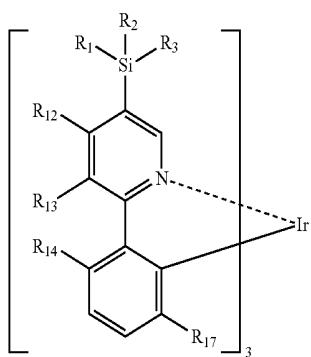

Formula 1-53

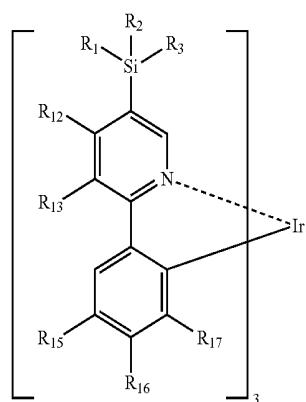
-continued

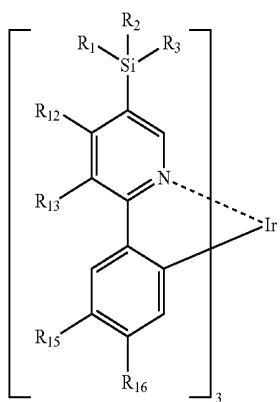


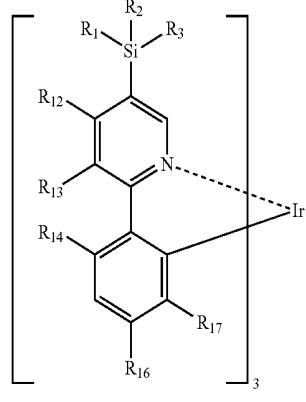
Formula 1-54


-continued

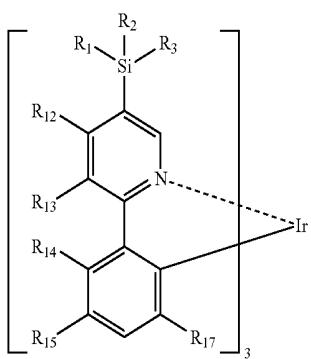

Formula 1-58


Formula 1-55

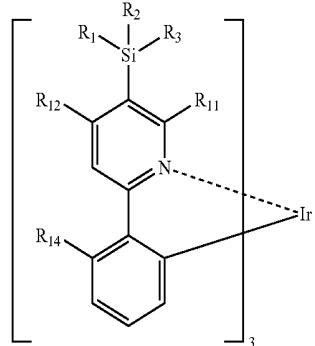

Formula 1-59


Formula 1-56

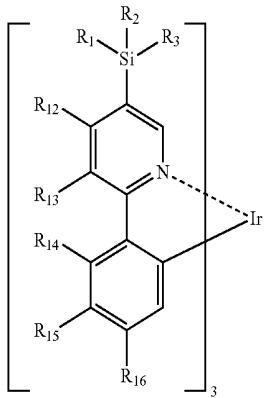
Formula 1-60



Formula 1-57

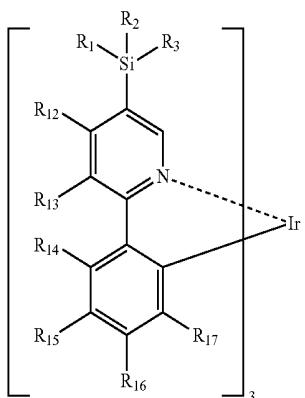

Formula 1-61

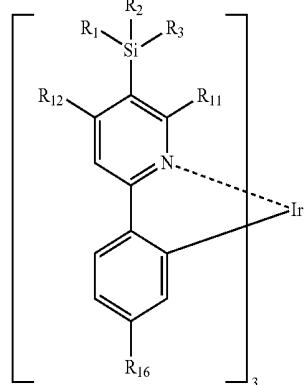
-continued

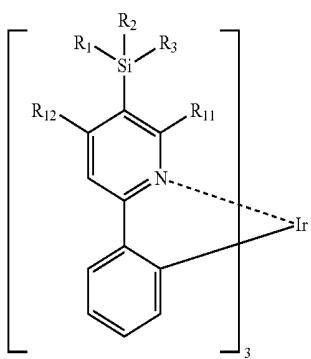

Formula 1-62

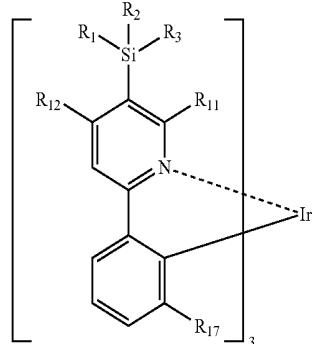
-continued

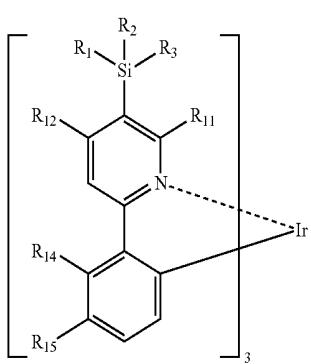
Formula 1-66


Formula 1-63

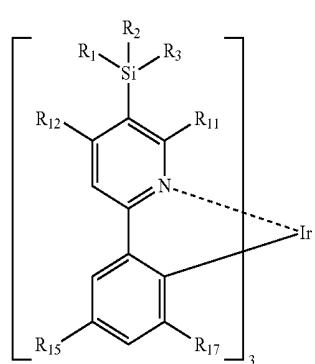

Formula 1-67


Formula 1-64

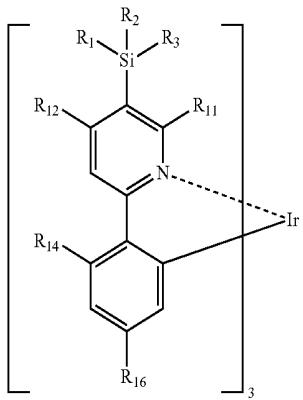

Formula 1-68


Formula 1-65

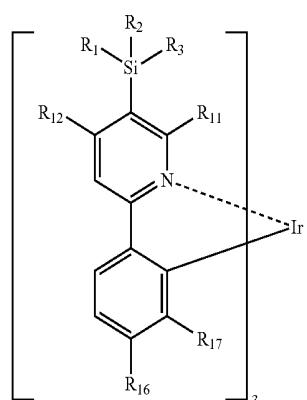
Formula 1-69

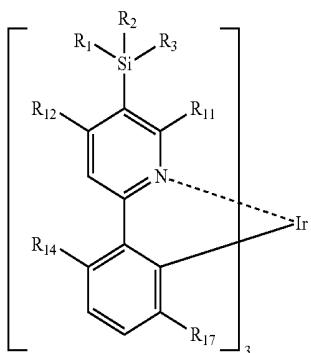


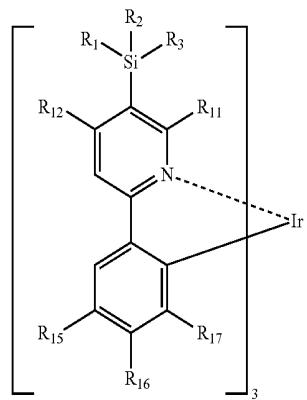
-continued

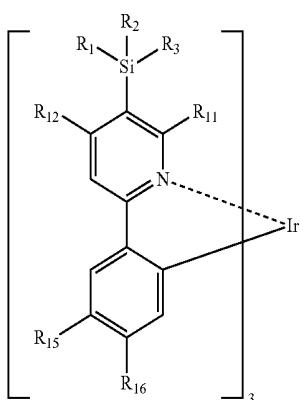


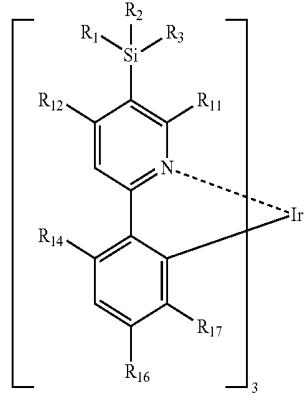
Formula 1-70


-continued

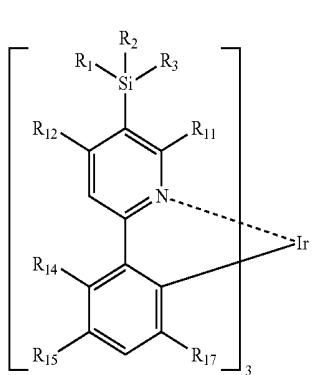

Formula 1-74


Formula 1-71

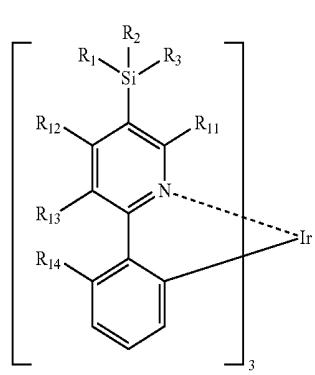

Formula 1-75


Formula 1-72

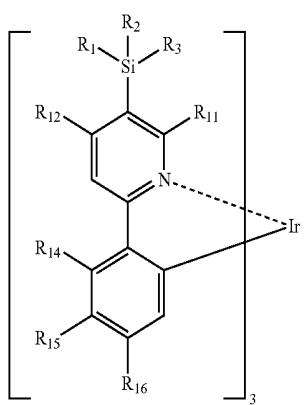
Formula 1-76



Formula 1-73

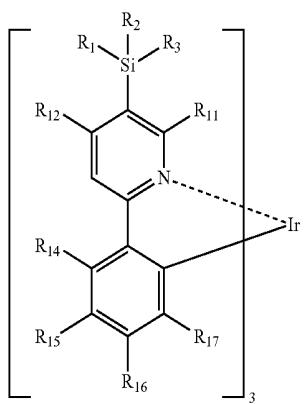
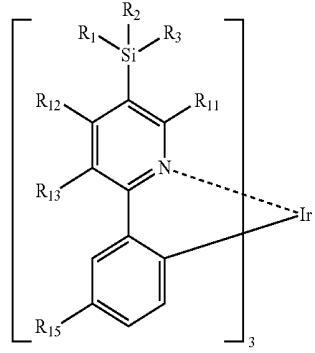

Formula 1-77

-continued

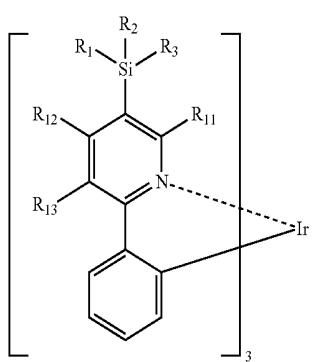
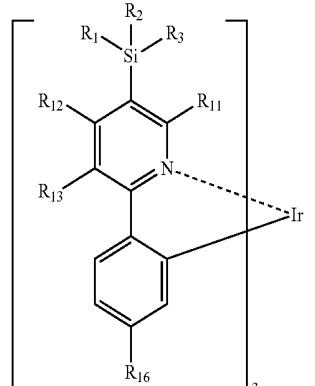


Formula 1-78

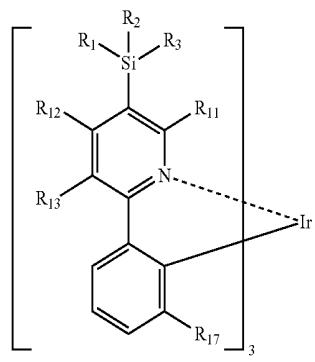
-continued

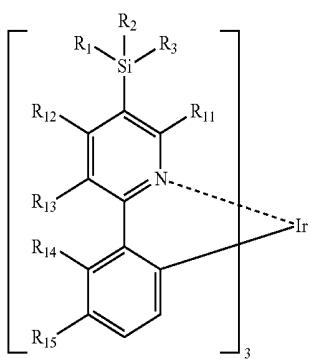
Formula 1-82



Formula 1-79

Formula 1-83

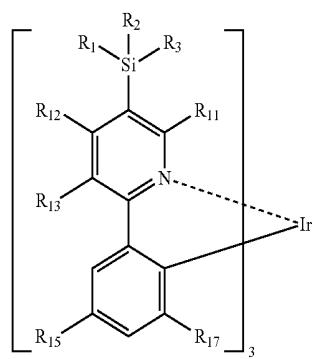

Formula 1-80

Formula 1-84

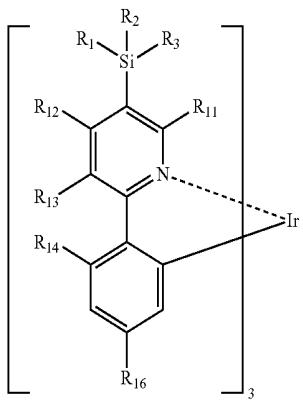


Formula 1-81

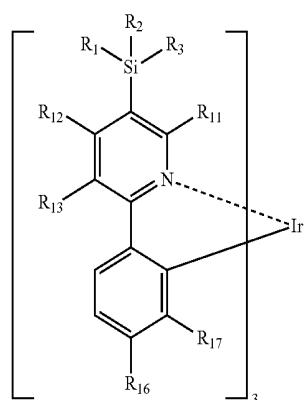
Formula 1-85

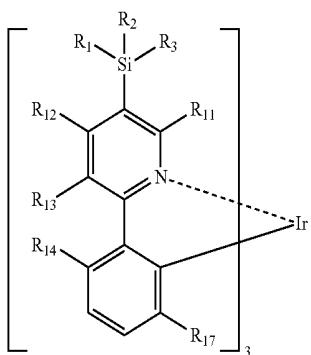


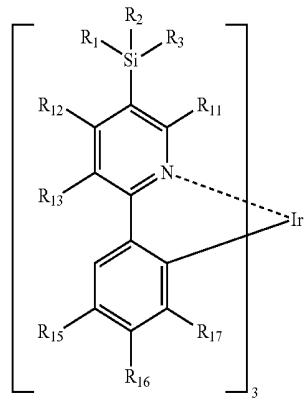
-continued

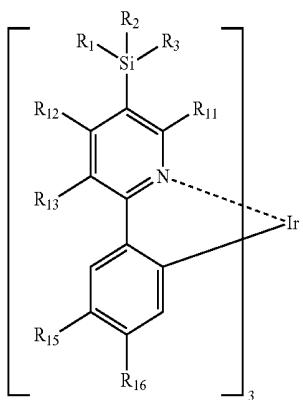


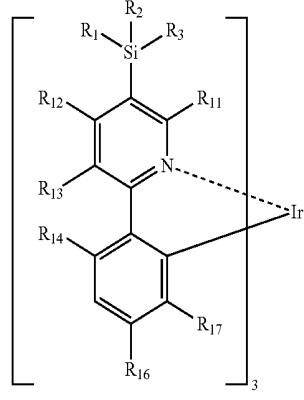
Formula 1-86


-continued

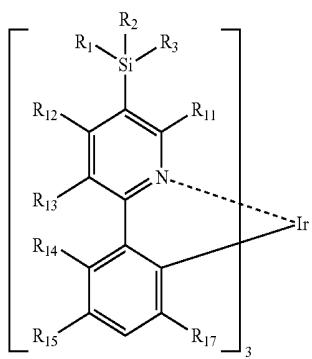

Formula 1-90


Formula 1-87

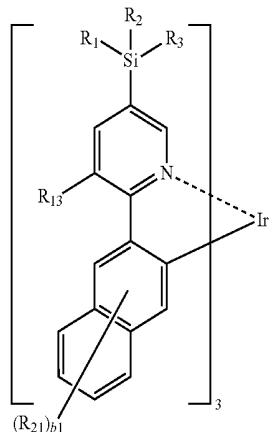

Formula 1-91


Formula 1-88

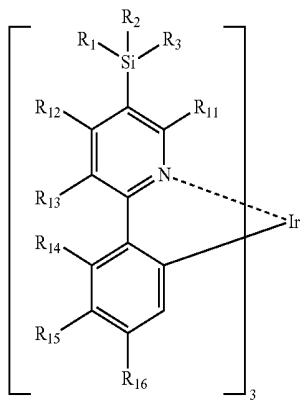
Formula 1-92



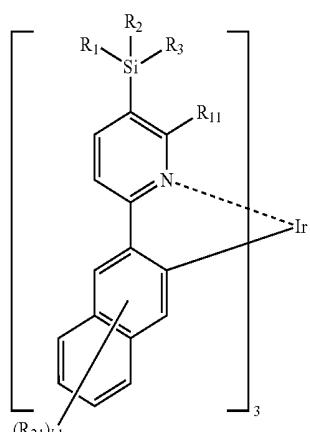
Formula 1-89

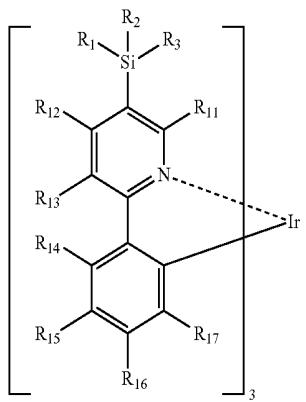

Formula 1-93

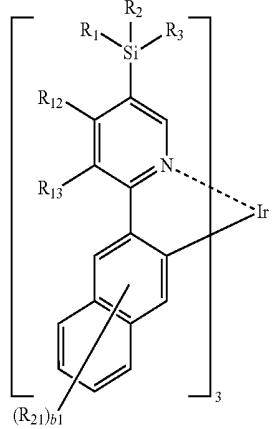
-continued

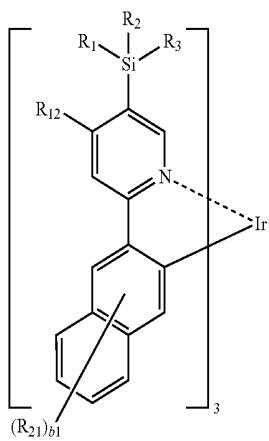


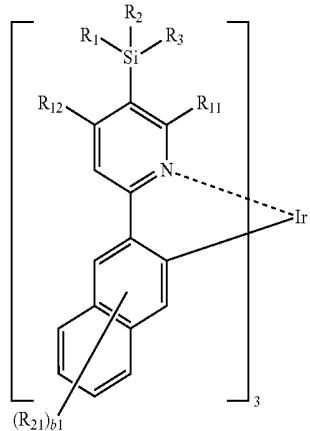
Formula 1-94


-continued

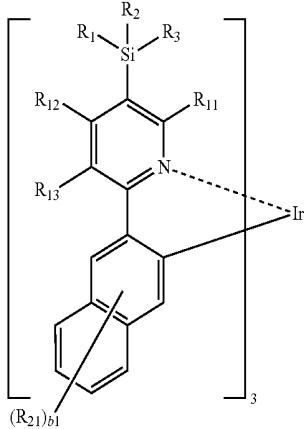

Formula 1-98


Formula 1-95

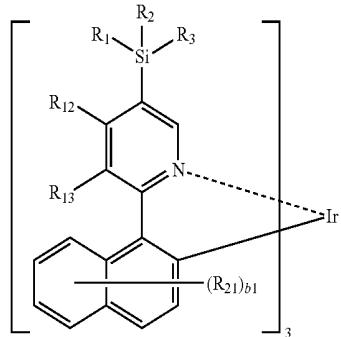

Formula 1-99


Formula 1-96

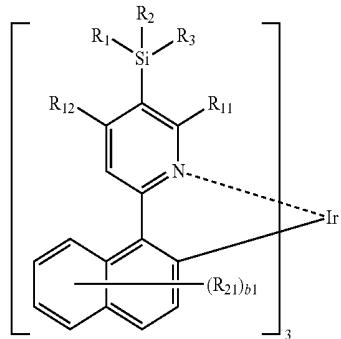
Formula 1-100



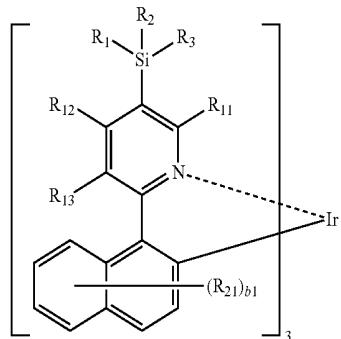
Formula 1-97


Formula 1-101

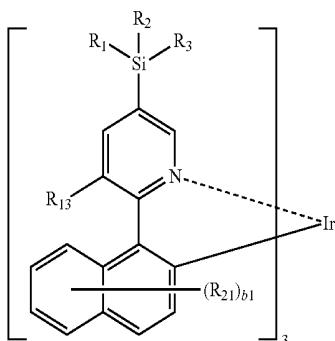
-continued


Formula 1-102

-continued


Formula 1-106

Formula 1-107



Formula 1-103

Formula 1-108

Formula 1-104

Formula 1-105

wherein in Formulae 1-2, 1-4 to 1-9, 1-11, 1-13 to 1-16 and 1-18 to 1-108,

R₁ to R₃ are each independently selected from a hydrogen, a deuterium, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted C₁-C₁₀ heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubstituted C₆-C₆₀ aryloxy group, a substituted or unsubstituted C₆-C₆₀ arylthio group, a substituted or unsubstituted C₇-C₆₀ arylalkyl group, a substituted or unsubstituted C₁-C₆₀ heteroaryl group, a substituted or unsubstituted C₂-C₆₀ heteroaryloxy group, a substituted or unsubstituted C₂-C₆₀ heteroarylthio group, a substituted or unsubstituted C₃-C₆₀ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or

unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and $-\text{Si}(\text{Q}_{51})(\text{Q}_{52})(\text{Q}_{53})$, R_{11} to R_{17} and R_{21} are each independently selected from a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{SF}_5$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted $\text{C}_1\text{-C}_{60}$ alkyl group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ alkenyl group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ alkynyl group, a substituted or unsubstituted $\text{C}_1\text{-C}_{60}$ alkoxy group, a substituted or unsubstituted $\text{C}_3\text{-C}_{10}$ cycloalkyl group, a substituted or unsubstituted $\text{C}_1\text{-C}_{10}$ heterocycloalkyl group, a substituted or unsubstituted $\text{C}_3\text{-C}_{10}$ cycloalkenyl group, a substituted or unsubstituted $\text{C}_1\text{-C}_{10}$ heterocycloalkenyl group, a substituted or unsubstituted $\text{C}_6\text{-C}_{60}$ aryl group, a substituted or unsubstituted $\text{C}_6\text{-C}_{60}$ aryloxy group, a substituted or unsubstituted $\text{C}_6\text{-C}_{60}$ arylthio group, a substituted or unsubstituted $\text{C}_7\text{-C}_{60}$ arylalkyl group, a substituted or unsubstituted $\text{C}_1\text{-C}_{60}$ heteroaryl group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ heteroaryloxy group, a substituted or unsubstituted $\text{C}_2\text{-C}_{60}$ heteroarylthio group, a substituted or unsubstituted $\text{C}_3\text{-C}_{60}$ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_1)(\text{Q}_2)$, $-\text{B}(\text{Q}_3)(\text{Q}_4)$, and $-\text{P}(=\text{O})(\text{Q}_5)(\text{Q}_6)$,

b1 is an integer selected from 0 to 6,

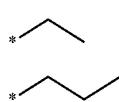
at least one of substituents of the substituted C₁-C₆₀ alkyl group, substituted C₂-C₆₀ alkenyl group, substituted C₂-C₆₀ alkynyl group, substituted C₁-C₆₀ alkoxy group, substituted C₃-C₁₀ cycloalkyl group, substituted C₁-C₁₀ heterocycloalkyl group, substituted C₃-C₁₀ cycloalkenyl group, substituted C₁-C₁₀ heterocycloalkenyl group, substituted C₆-C₆₀ aryl group, substituted C₆-C₆₀ aryloxy group, substituted C₆-C₆₀ arylthio group, substituted C₇-C₆₀ arylalkyl group, substituted C₁-C₆₀ heteroaryl group, substituted C₂-C₆₀ heteroaryloxy group, substituted C₂-C₆₀ heteroarylthio group, substituted C₃-C₆₀ heteroarylalkyl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:

a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, and a C₁-C₆₀ alkoxy group;

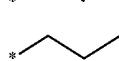
a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocy-

cloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_{11})(\text{Q}_{12})$, $-\text{B}(\text{Q}_{13})(\text{Q}_{14})$, and $-\text{P}(=\text{O})(\text{Q}_{15})(\text{Q}_{16})$;

a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C_1 - C_{60} alkoxy group, a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q₂₁)(Q₂₂), —B(Q₂₃)(Q₂₄), and —P(=O)(Q₂₅)(Q₂₆); and —N(Q₃₁)(Q₃₂), —B(Q₃₃)(Q₃₄), and —P(=O)(Q₃₅)(Q₃₆);

wherein Q_1 to Q_6 , Q_{11} to Q_{16} , Q_{21} to Q_{26} , Q_{31} to Q_{36} , and Q_{51} to Q_{53} are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C_1 - C_{60} alkyl group, a substituted or unsubstituted C_2 - C_{60} alkenyl group, a substituted or unsubstituted C_2 - C_{60} alkynyl group, a substituted or unsubstituted C_1 - C_{60} alkoxy group, a substituted or unsubstituted C_3 - C_{10} cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C_3 - C_{10} cycloalkenyl group, a substituted or unsubsti-

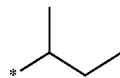

tuted heterocycloalkenyl group, a substituted or unsubstituted C_6 - C_{60} aryl group, a substituted or unsubstituted C_6 - C_{60} aryloxy group, a substituted or unsubstituted C_6 - C_{60} arylthio group, a substituted or unsubstituted C_7 - C_{60} arylalkyl group, a substituted or unsubstituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted C_2 - C_{60} heteroaryloxy group, a substituted or unsubstituted C_2 - C_{60} heteroarylthio group, a substituted or unsubstituted C_3 - C_{60} heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

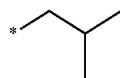
2. The organometallic compound of claim 1, wherein R_1 to R_3 are each independently selected from a hydrogen, a deuterium, $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CD}_2\text{H}$, $-\text{CH}_2\text{CDH}_2$, $-\text{CHDCH}_3$, $-\text{CHDCD}_2\text{H}$, $-\text{CHDCH}_2$, $-\text{CHDCD}_3$, $-\text{CD}_2\text{CD}_3$, $-\text{CD}_2\text{CD}_2\text{H}$, and $-\text{CD}_2\text{CDH}_2$; an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, a naphthyl group, and $-\text{Si}(Q_{51})(Q_{52})(Q_{53})$; and an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C_1 - C_{10} alkyl group, and a phenyl group, wherein Q_{51} to Q_{53} are each independently selected from a hydrogen, a deuterium, $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{CD}_3$, $-\text{CH}_2\text{CD}_2\text{H}$, $-\text{CH}_2\text{CDH}_2$, $-\text{CHDCH}_3$, $-\text{CHDCD}_2\text{H}$, $-\text{CHDCH}_2$, $-\text{CHDCD}_3$, $-\text{CD}_2\text{CD}_3$, $-\text{CD}_2\text{CD}_2\text{H}$, and $-\text{CD}_2\text{CDH}_2$; an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C_1 - C_{10} alkyl group, and a phenyl group.

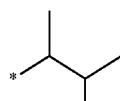
3. The organometallic compound of claim 1, wherein R_1 to R_3 are each independently selected from a hydrogen, a deuterium, $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, groups represented by Formulae 9-1 to 9-19, and groups represented by Formulae 10-1 to 10-18:

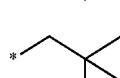
Formula 9-1

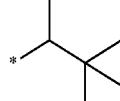
Formula 9-2

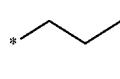

-continued

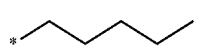

Formula 9-3

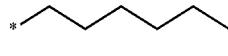

Formula 9-4


Formula 9-5

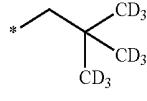

Formula 9-6

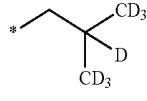

Formula 9-7

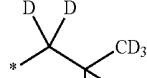

Formula 9-8

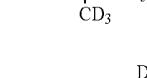

Formula 9-9

Formula 9-10


Formula 9-11

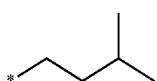

Formula 9-12

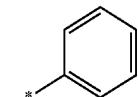

Formula 9-13

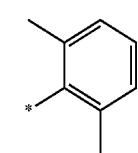

Formula 9-14

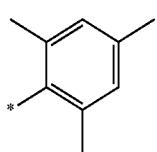
Formula 9-15

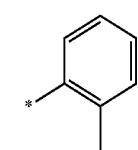
Formula 9-16

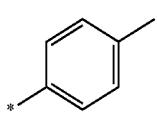

Formula 9-17

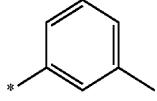

Formula 9-18

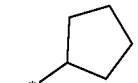

-continued

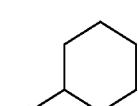

Formula 9-19

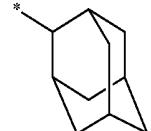

Formula 10-1

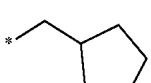

Formula 10-2

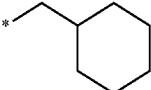

Formula 10-3


Formula 10-4

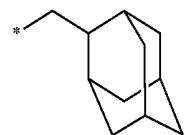

Formula 10-5


Formula 10-6

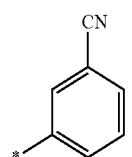

Formula 10-7


Formula 10-8

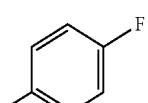
Formula 10-9

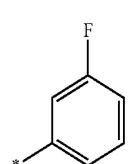


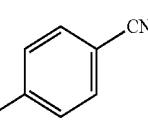
Formula 10-10

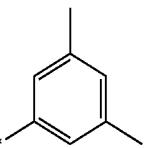


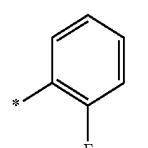
Formula 10-11


-continued


Formula 10-12

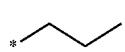

Formula 10-13


Formula 10-14


Formula 10-15

Formula 10-16

Formula 10-17

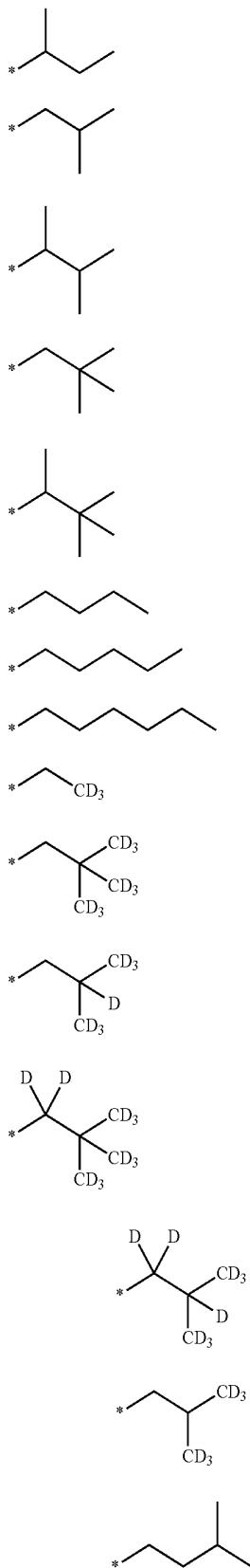

Formula 10-18

wherein * in Formulae 9-1 to 9-19 and 10-1 to 10-18 is a binding site to a neighboring atom.

4. The organometallic compound of claim 1, wherein R_1 to R_3 are all identical to each other, and R_1 to R_3 are selected from $-\text{CH}_3$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, groups represented by Formulae 9-1 to 9-19, and a phenyl group:

Formula 9-1

Formula 9-2



Formula 9-3

Formula 9-4

-continued

5. The organometallic compound of claim 1, wherein R_{11} to R_{17} and R_{21} are each independently selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF₅, C_1 - C_{20} alkyl group, and a C_1 - C_{20} alkoxy group;

a C_1 - C_{20} alkyl group and a C_1 - C_{20} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{10} alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl (adamantyl) group, a norbornanyl (norbornyl) group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

wherein * in Formulae 9-1 to 9-19 is a binding site to a neighboring atom.

group, a quinoxaliny group, a quinazoliny group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenly group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysanyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

—B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

wherein Q₃ to Q₆ are each independently selected from a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHD-CDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;

an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

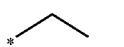
an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group, and

b1 is 0, 1, or 2.

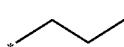
6. The organometallic compound of claim 1, wherein R₁₁ to R₁₇ and R₂₁ are each independently selected from a deuterium, —F, a cyano group, a nitro group, —SF₅, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;

a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from a deuterium, —F, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a cyano group, a nitro group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and

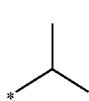
—B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),


wherein Q₃ to Q₆ are each independently selected from a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHD-CDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;

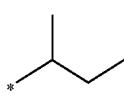
an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

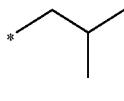

an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group, and

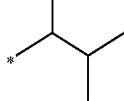
b1 is 0, 1, or 2.

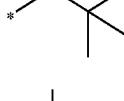

7. The organometallic compound of claim 1, wherein R₁₁ to R₁₇ and R₂₁ are each independently selected from a deuterium, —F, a cyano group, a nitro group, —SF₅, —CH₃, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, groups represented by Formulae 9-1 to 9-19, and groups represented by Formulae 10-1 to 10-36, and b1 is 0, 1, or 2:

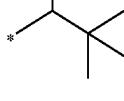
Formula 9-1


Formula 9-2

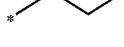

Formula 9-3

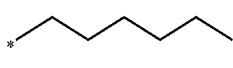

Formula 9-4

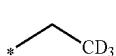

Formula 9-5


Formula 9-6

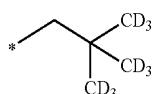
Formula 9-7


Formula 9-8

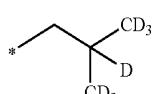

Formula 9-9


Formula 9-10

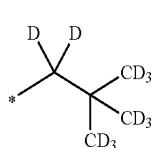
Formula 9-11

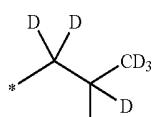


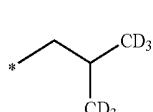
Formula 9-12

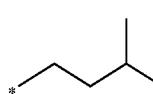


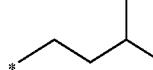
Formula 9-13

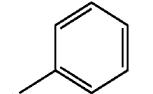

-continued

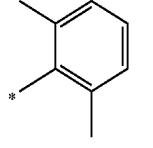

Formula 9-14

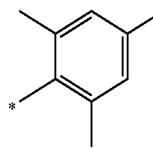

Formula 9-15

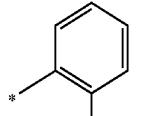

Formula 9-16

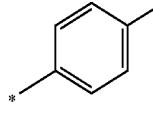

Formula 9-17

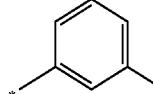

Formula 9-18

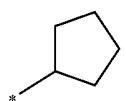

Formula 9-19

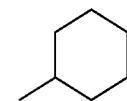

Formula 10-1

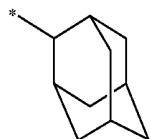

Formula 10-2

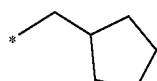

Formula 10-3

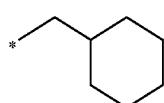

Formula 10-4

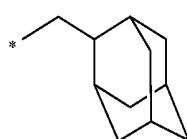

Formula 10-5

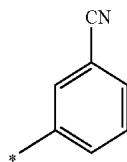

Formula 10-6

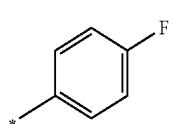

-continued


Formula 10-7

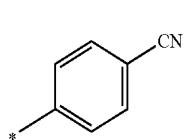

Formula 10-8

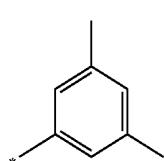

Formula 10-9


Formula 10-10

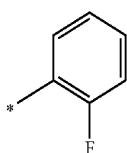

Formula 10-11

Formula 10-12

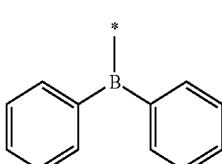

Formula 10-13


Formula 10-14

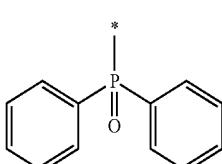
Formula 10-15

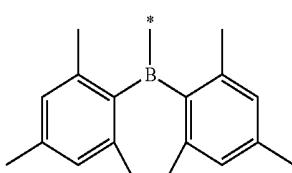


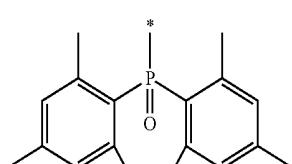
Formula 10-16

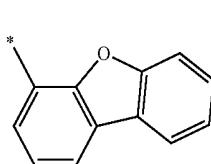


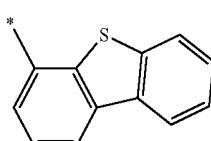
Formula 10-17

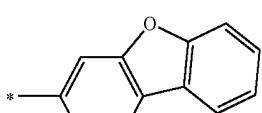

-continued

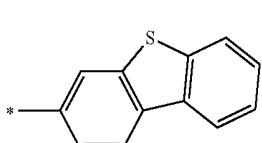

Formula 10-18


Formula 10-19

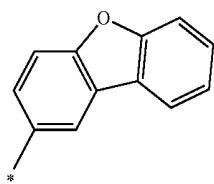

Formula 10-20


Formula 10-21

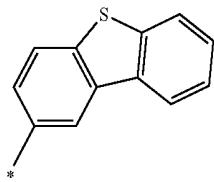

Formula 10-22


Formula 10-23

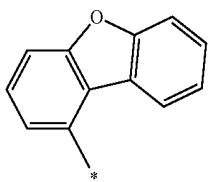
Formula 10-24

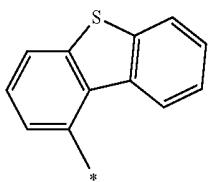


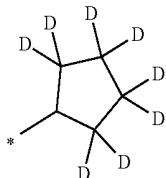
Formula 10-25

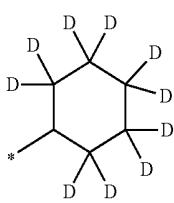


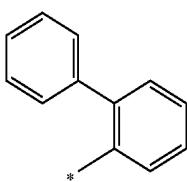
Formula 10-26

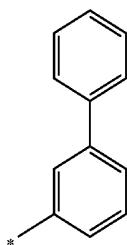

-continued


Formula 10-27

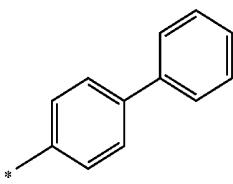

Formula 10-28

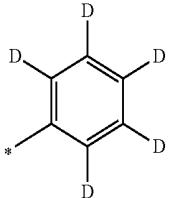

Formula 10-29


Formula 10-30


Formula 10-31

Formula 10-32


Formula 10-33


Formula 10-34

-continued

Formula 10-35

Formula 10-36

wherein * in Formulae 9-1 to 9-19 and 10-1 to 10-36 is a binding site to a neighboring atom.

8. The organometallic compound of claim 1, wherein R_{12} is selected from

a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, —SF₅, C₁-C₂₀ alkyl group, and a C₁-C₂₀ alkoxy group;

a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group and a pyrimidinyl group;

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a tri-

azolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysanyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and

—B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

wherein Q₃ to Q₆ are each independently selected from a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHD-CDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂;

an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group.

9. The organometallic compound of claim 1, wherein R₁₂ is a substituted or unsubstituted C₁-C₂₀ alkyl group.

10. The organometallic compound of claim 1, wherein R₁₂ is selected from

a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group; and a C₁-C₂₀ alkyl group and a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

11. The organometallic compound of claim 1, wherein R₁₂ is selected from

a C₂-C₂₀ alkyl group and a C₂-C₂₀ alkoxy group; a methyl group and a methoxy group, each substituted with at least one selected from a deuterium, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

a C₂-C₂₀ alkyl group and a C₂-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and

—B(Q₃)(Q₄) and —P(=O)(Q₅)(Q₆),

wherein Q₃ to Q₆ are each independently selected from a hydrogen, a deuterium, —CH₃, —CD₃, —CD₂H, —CDH₂, —CH₂CH₃, —CH₂CD₃, —CH₂CD₂H, —CH₂CDH₂, —CHDCH₃, —CHDCD₂H, —CHD-CDH₂, —CHDCD₃, —CD₂CD₃, —CD₂CD₂H, and —CD₂CDH₂,

an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group; and

an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a phenyl group, and a naphthyl group, each substituted with at least one selected from a deuterium, a C₁-C₁₀ alkyl group, and a phenyl group.

12. The organometallic compound of claim 1, wherein R₁₂ is selected from

an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group;

a methyl group and a methoxy group, each substituted with at least one selected from a deuterium, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl

group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, a tert-decyl group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a cyano group, a nitro group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

13. The organometallic compound of claim 1, wherein R₁₂ is selected from a C₂-C₂₀ alkyl group; a methyl group, substituted with at least one selected from a deuterium, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and a C₂-C₂₀ alkyl group, substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₁₀ alkyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

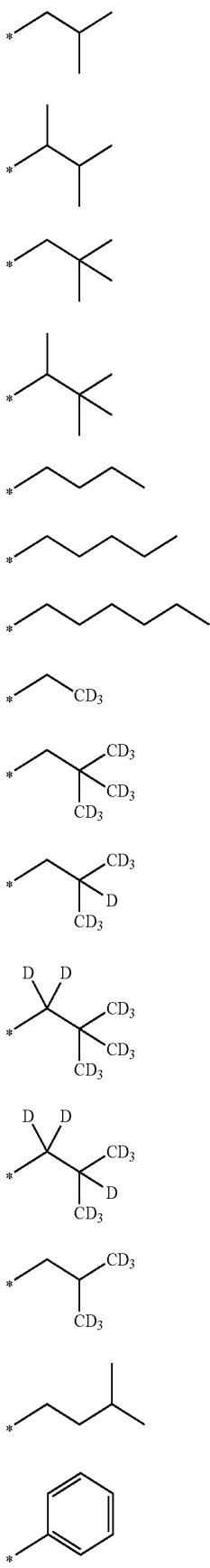
14. The organometallic compound of claim 1, wherein R₁₂ is selected from an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group,

an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group;

a methyl group, substituted with at least one selected from a deuterium, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group; and

an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an iso-hexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an iso-heptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an iso-octyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an iso-nonyl group, a sec-nonyl group, a tert-nonyl group, an n-decyl group, an isodecyl group, a sec-decyl group, and a tert-decyl group, each substituted with at least one selected from a deuterium, —F, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a cyano group, a nitro group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, a phenyl group, a naphthyl group, a pyridinyl group, and a pyrimidinyl group.

15. The organometallic compound of claim 1, wherein R₁ to R₃ are all identical to each other,


R₁ to R₃ are selected from —CH₃, —CD₃, —CD₂H, —CDH₂, groups represented by Formulae 9-1 to 9-19, and a phenyl group,

R₁₁ to R₁₇ and R₂₁ are each independently selected from a deuterium, —F, a cyano group, a nitro group, —SF₅, —CH₃, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, groups represented by Formulae 9-1 to 9-19, and groups represented by Formulae 10-1 to 10-36, and

b1 is 0, 1, or 2:

-continued

Formula 9-6

Formula 9-7

Formula 9-8

Formula 9-9

Formula 9-10

Formula 9-11

Formula 9-12

Formula 9-13

Formula 9-14

Formula 9-15

Formula 9-16

Formula 9-17

Formula 9-18

Formula 9-19

Formula 10-1

-continued

Formula 10-2

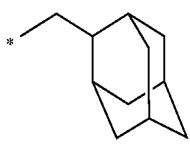
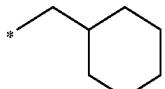
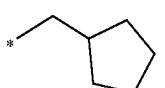
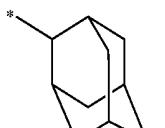
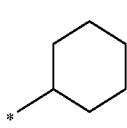
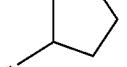
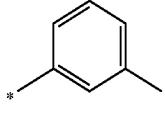
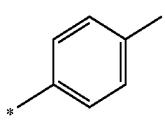
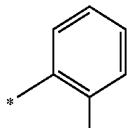
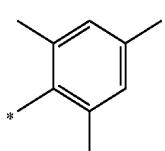
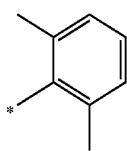
Formula 10-3

Formula 10-4

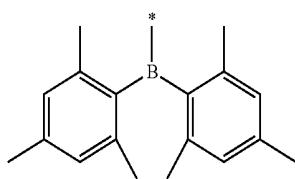
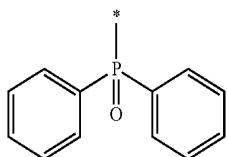
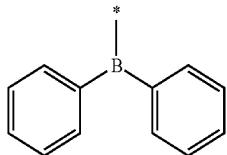
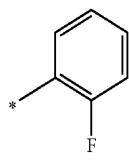
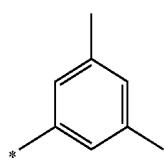
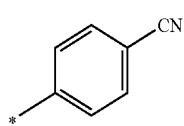
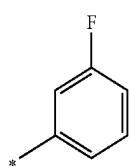
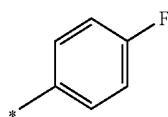
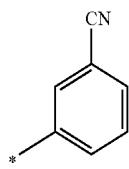
Formula 10-5

Formula 10-6

Formula 10-7

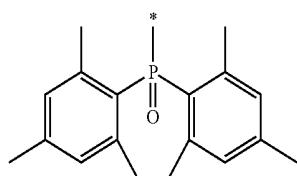











Formula 10-8

Formula 10-9










Formula 10-10

Formula 10-11

Formula 10-12



-continued

Formula 10-13

-continued

Formula 10-14

Formula 10-15

Formula 10-16

Formula 10-17

Formula 10-18

Formula 10-19

Formula 10-20

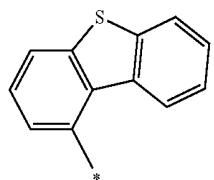
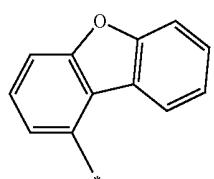
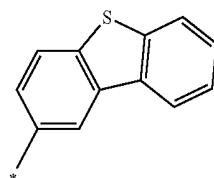
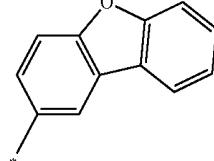
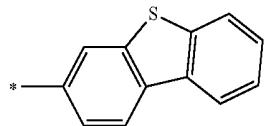
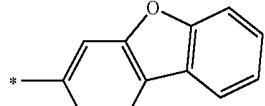
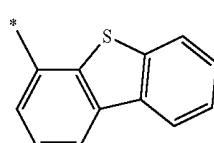
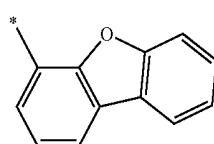
Formula 10-21

Formula 10-22

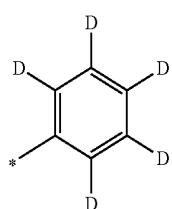
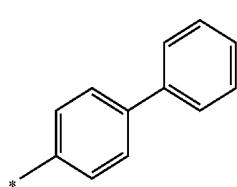
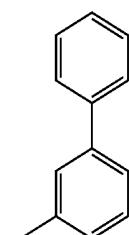
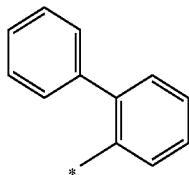
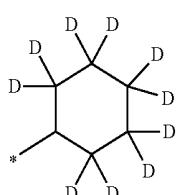
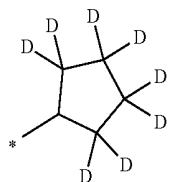
Formula 10-23

Formula 10-24

Formula 10-25









Formula 10-26

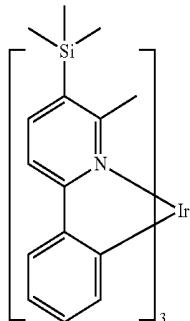
Formula 10-27







Formula 10-28

Formula 10-29

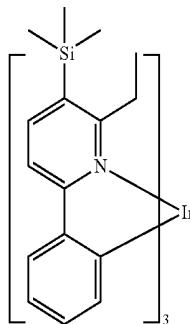
Formula 10-30

-continued

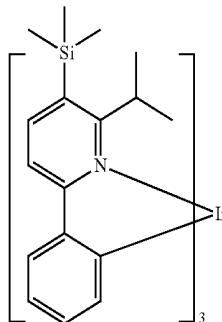

wherein * in Formulae 9-1 to 9-19 and 10-1 to 10-36 is a binding site to a neighboring atom.

16. The organometallic compound of claim 1, wherein the organometallic compound is represented by one of Formulae 1-2, 1-4 to 1-9, 1-11, 1-13 to 1-16 and 1-18 to 1-48, 1-97 to 1-99, and 1-103 to 1-105, provided that b1 in Formulae 1-97 to 1-99 and 1-103 to 1-105 is 0.

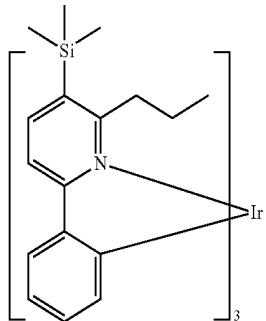
17. The organometallic compound of claim 1, wherein the organometallic compound is represented by one of Compounds 3, 6, 9, 12, 15, 18, 23, 26, 29, 33, 34, 36, 37, 39, 41, 43, 45, 46, 48, 49, 51, 53, 55 to 74, 85 to 90, and 92 to 168:


Formula 10-31

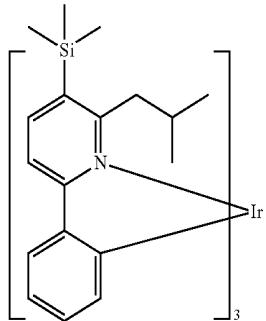
3


Formula 10-32

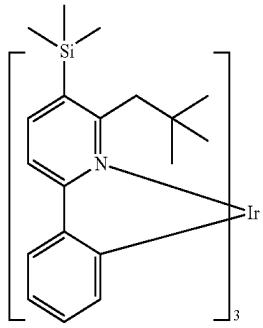
6


Formula 10-33

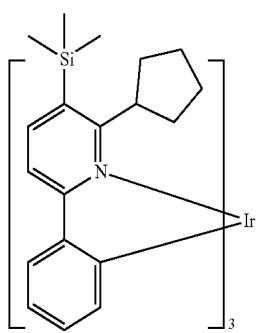
9

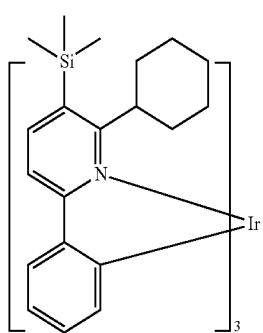

Formula 10-35

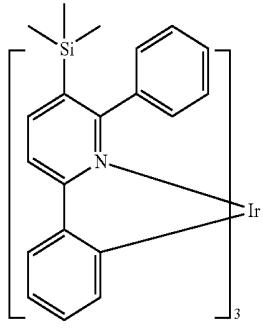
12

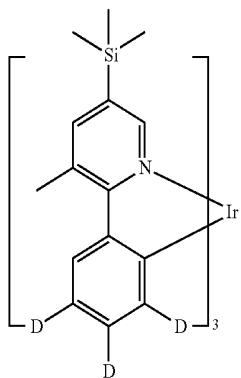


Formula 10-36

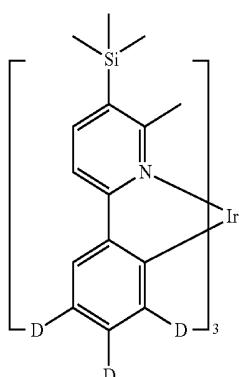

15


-continued

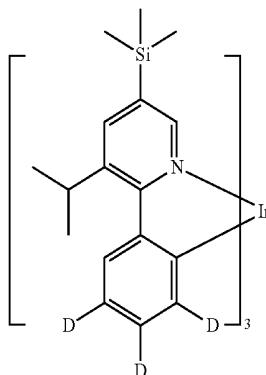

18


23

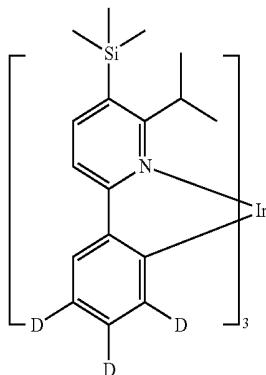
26

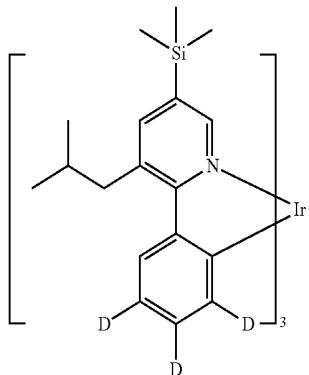


29

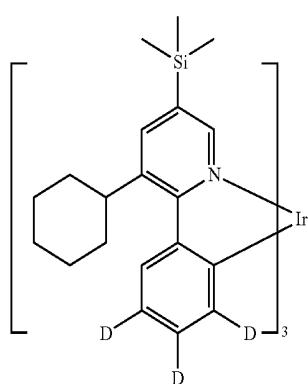


33

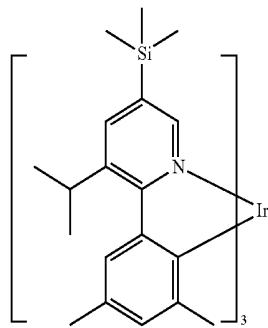

-continued


34

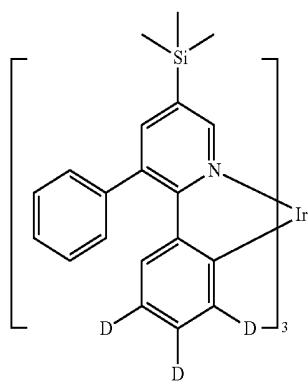
36



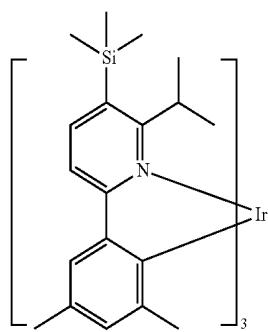
37

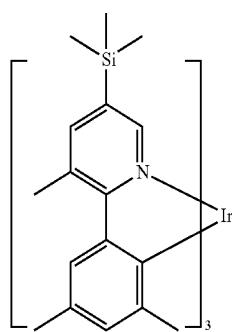

39

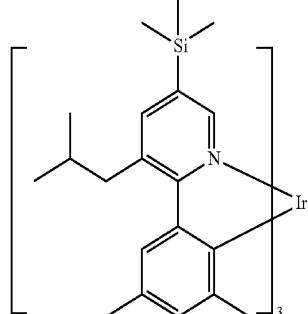
-continued

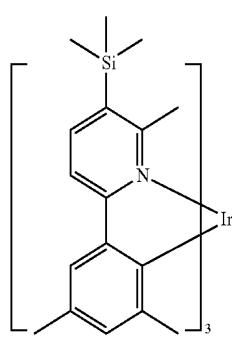


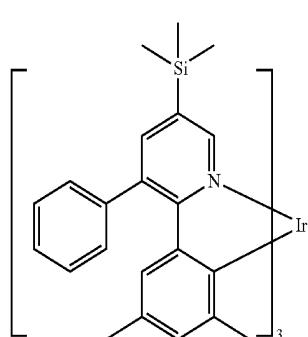
41

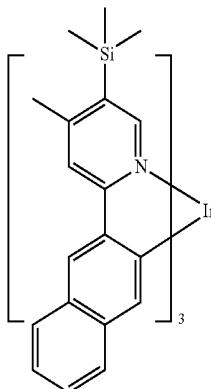

-continued


48

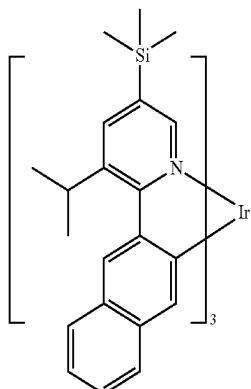

49


51

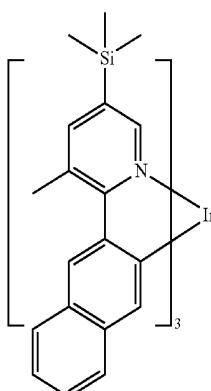

53


55

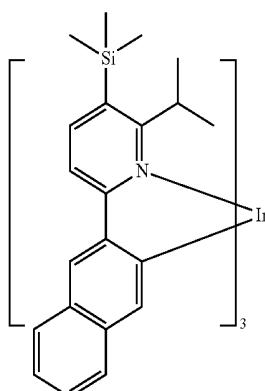
46

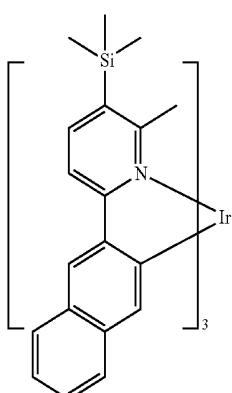


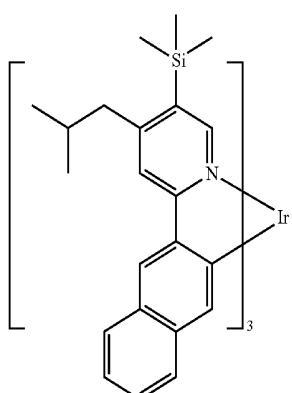
-continued

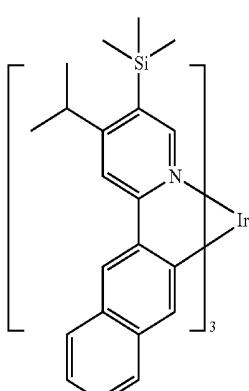


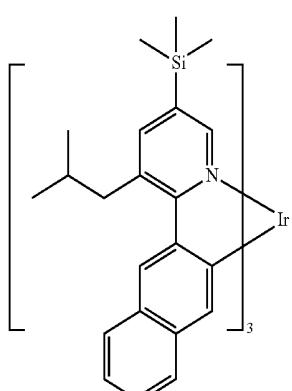
56


-continued

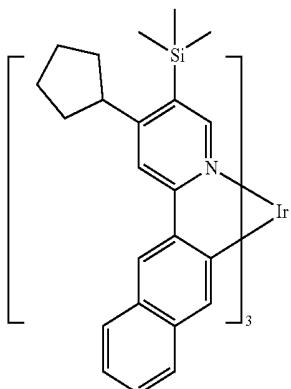

60


57


61


58

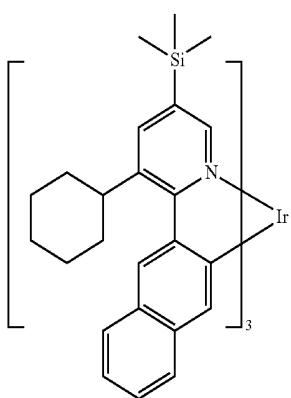
62



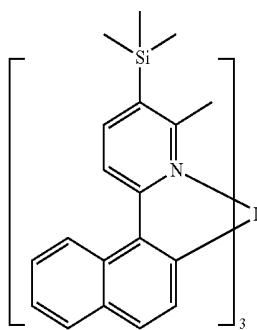
59

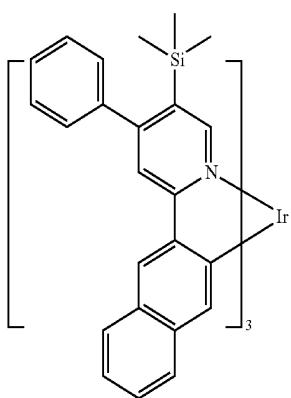
63

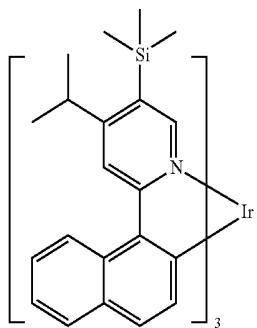
-continued

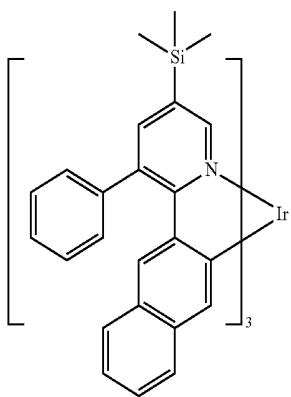


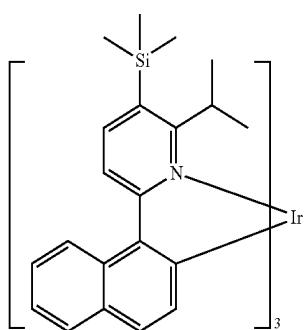
64

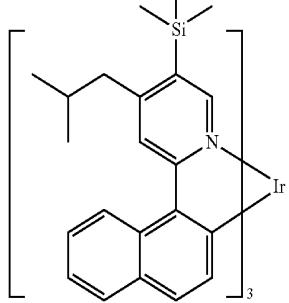

-continued


68

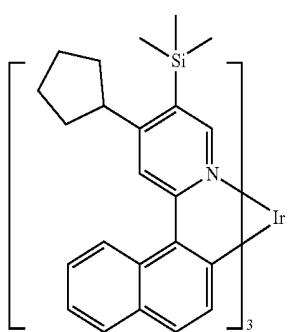

65


69

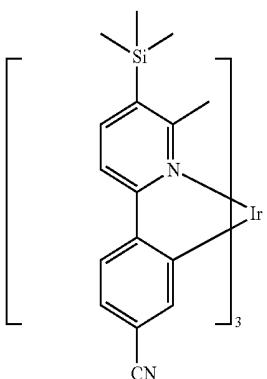

66


70

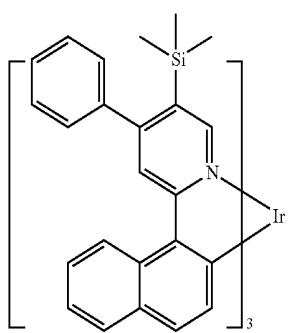
67



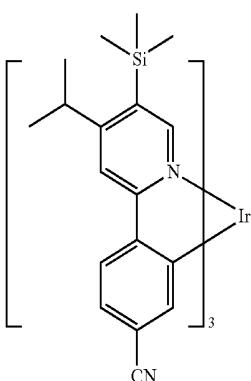
71

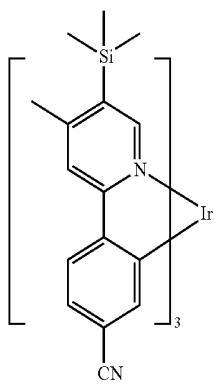

72

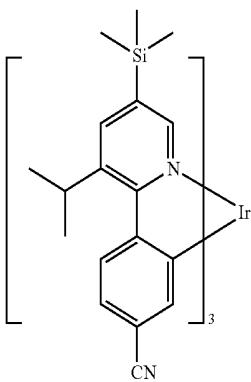
-continued

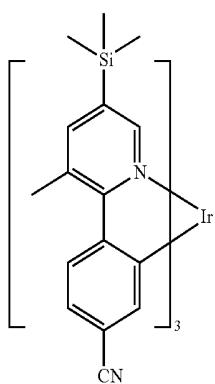


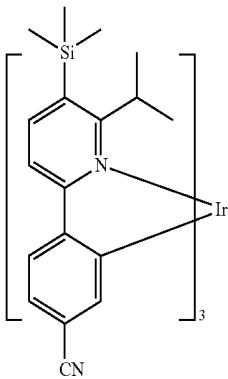
73


-continued

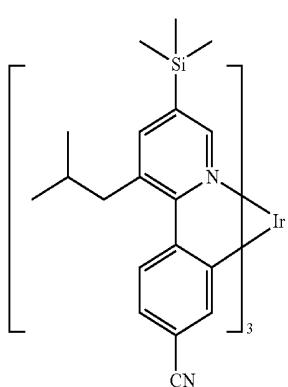

87


74

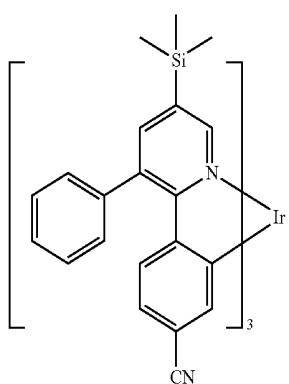

88


85

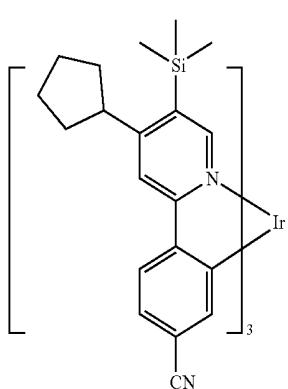
89



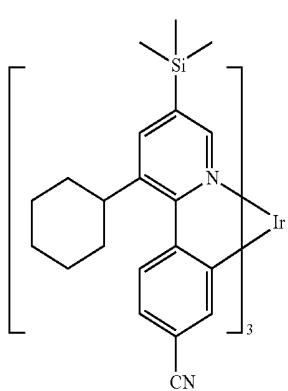
86


90

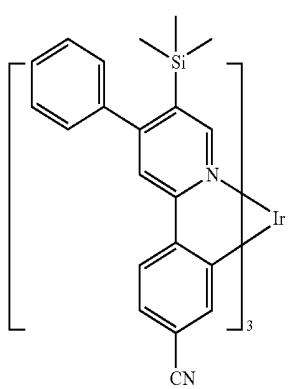
-continued


92

-continued


96

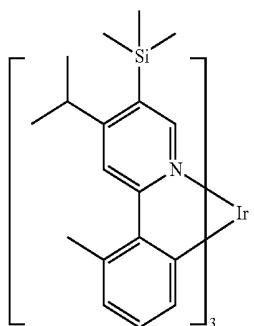
93


97

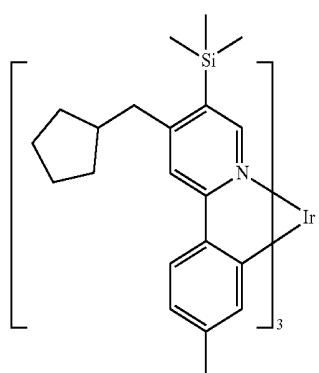
94

98

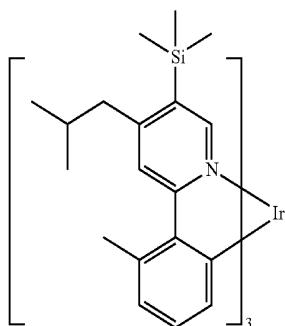
95


99

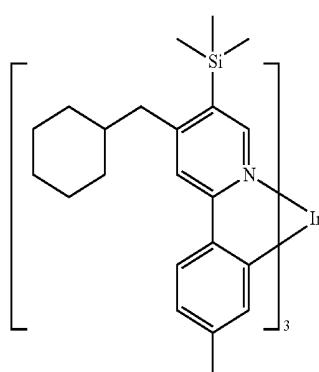
-continued

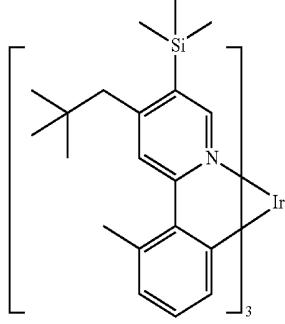

100

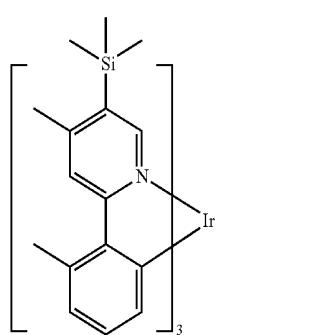
-continued

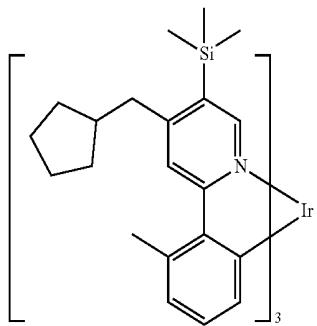


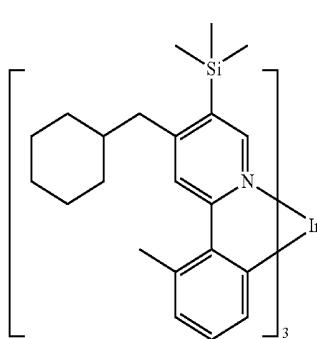
104


105

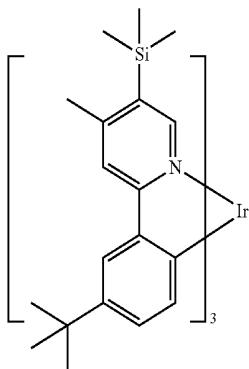

101


105

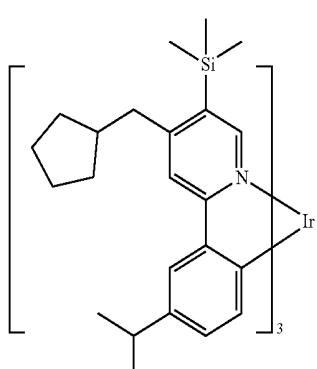

102


106

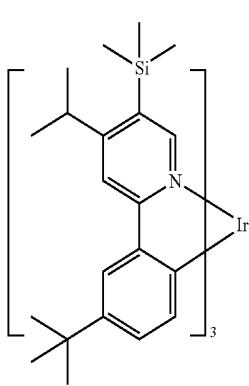
103



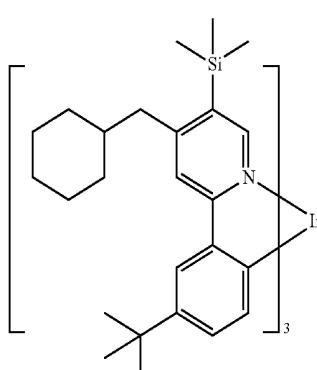
107


108

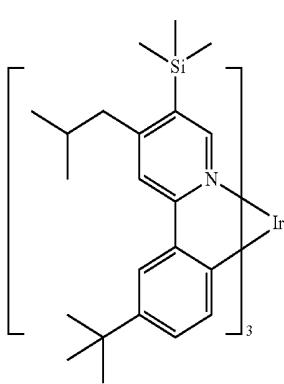
-continued

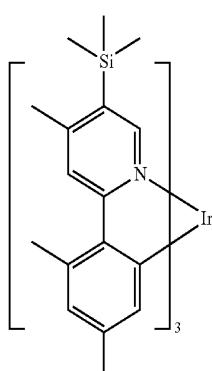

109

-continued

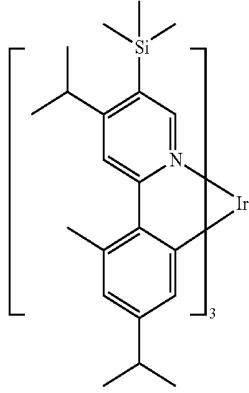
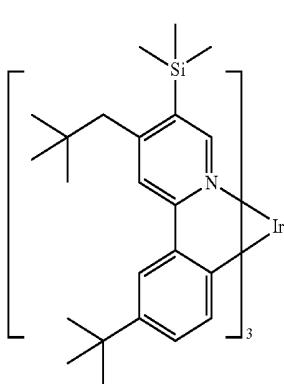


113

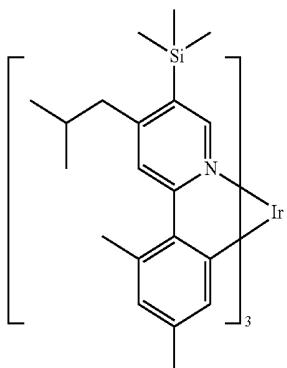

110


114

111

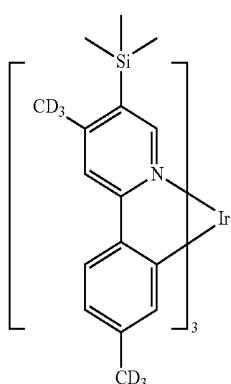



115

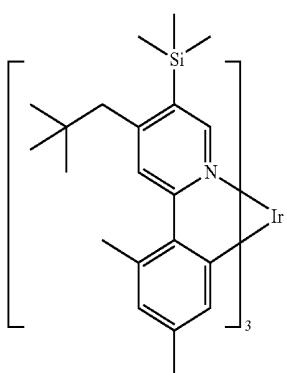


116

112

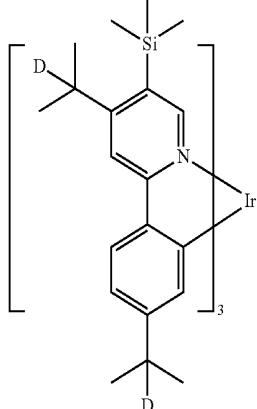


-continued

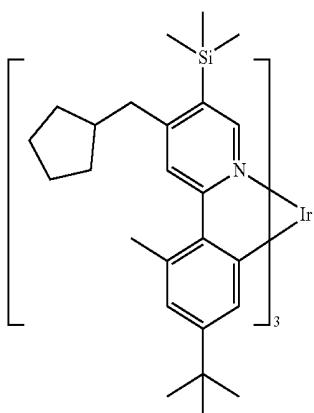


117

-continued

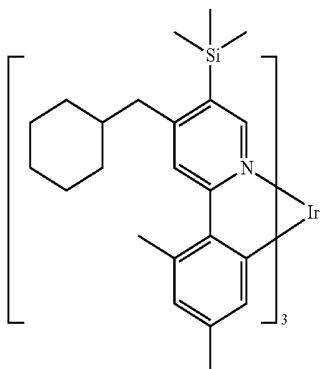


121

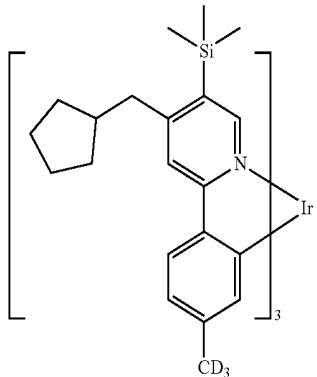


118

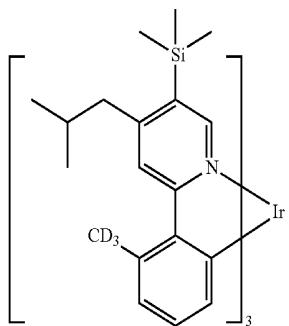
122



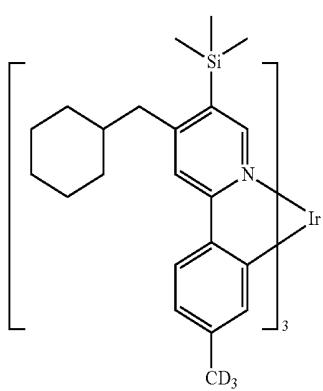
123


119

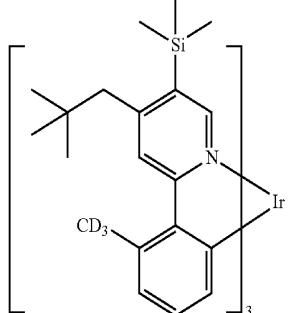
124

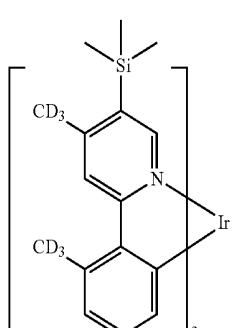

120

-continued

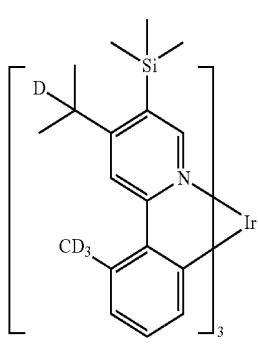


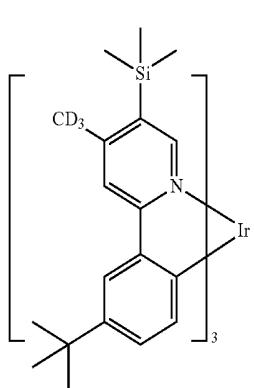
125


-continued

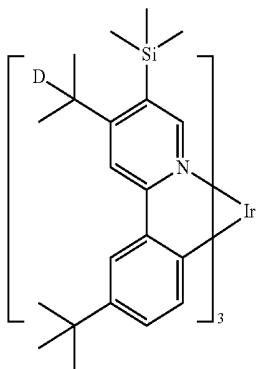

129


126

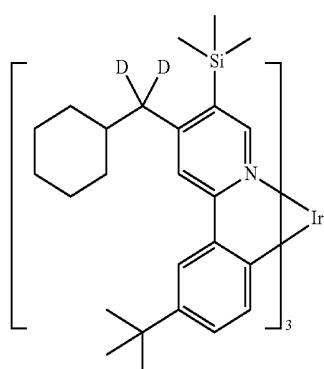

131


127

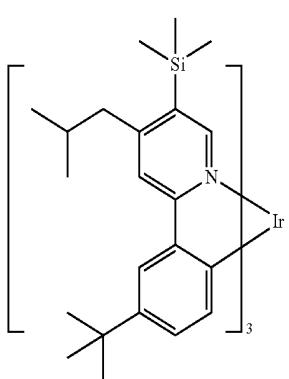
132



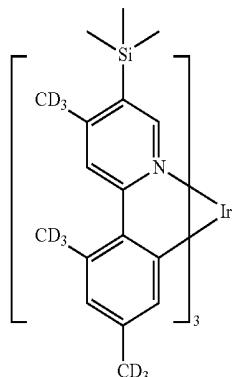
128


133

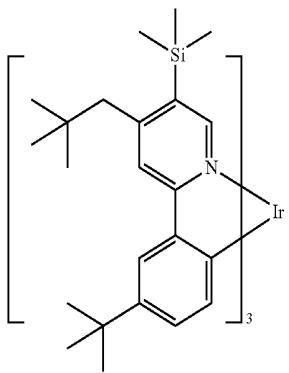
-continued

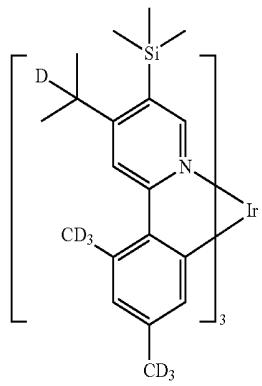

134

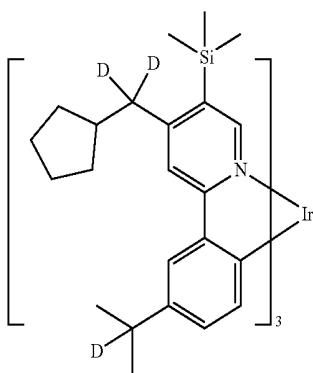
-continued

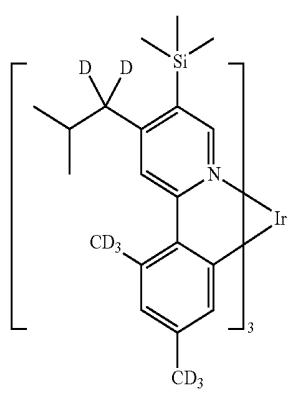


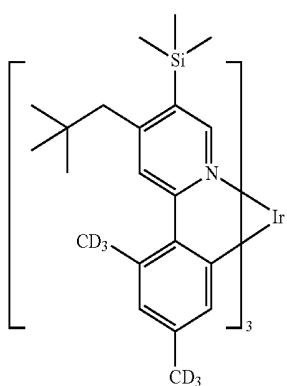
138


135

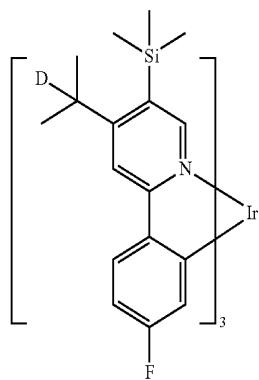

139


136

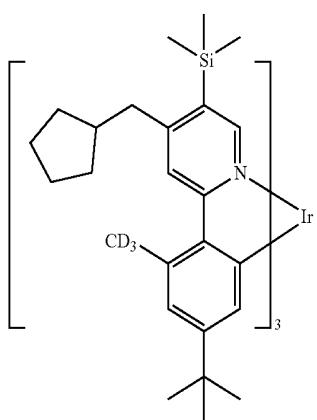

140


137

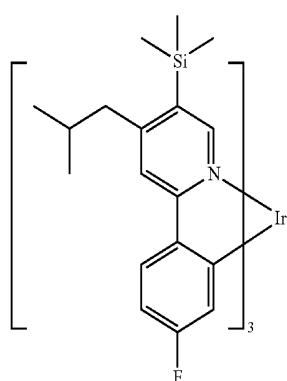
141

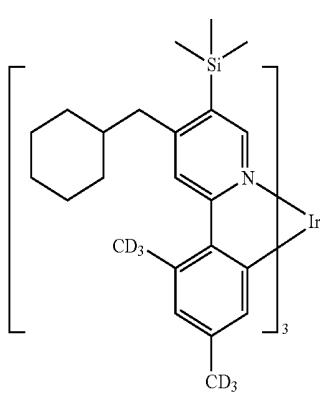


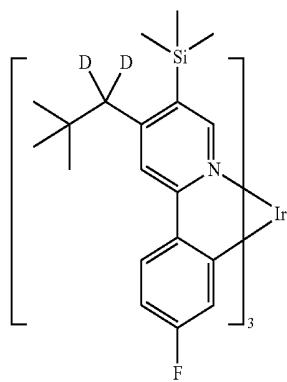
-continued

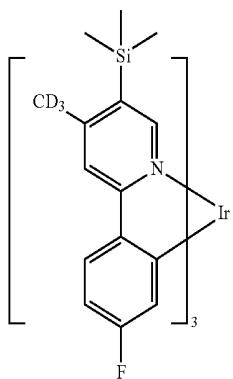


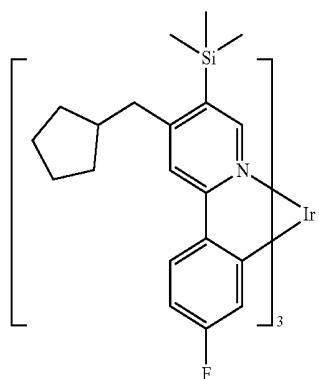
142


-continued

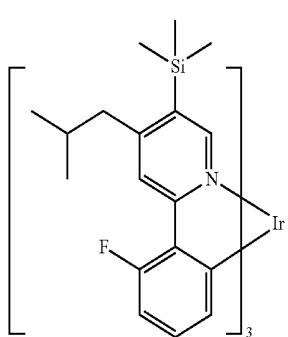
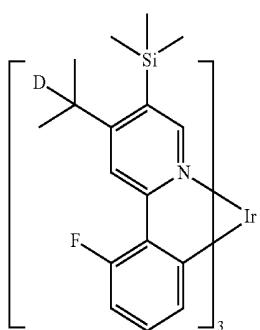
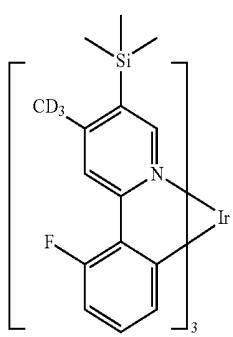
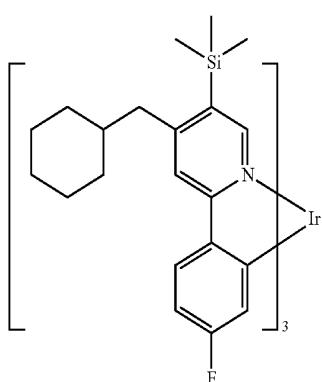

146


143

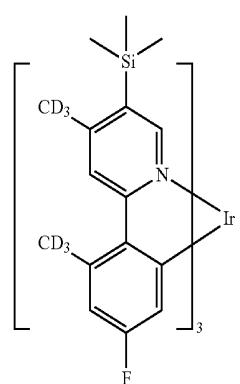
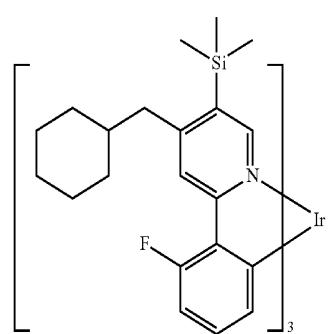
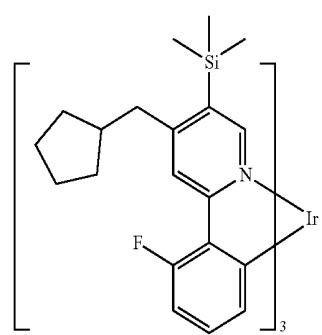
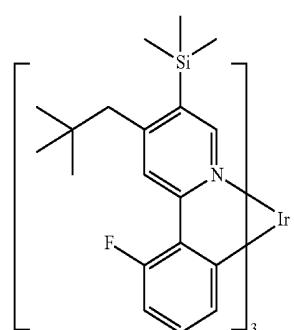

147


144

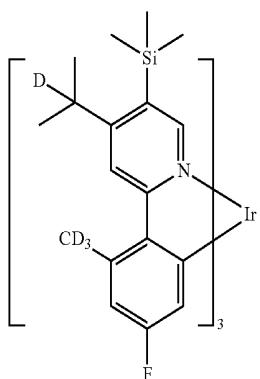
148

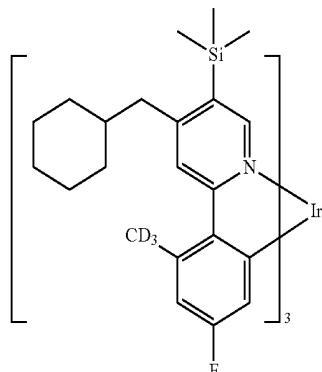
145

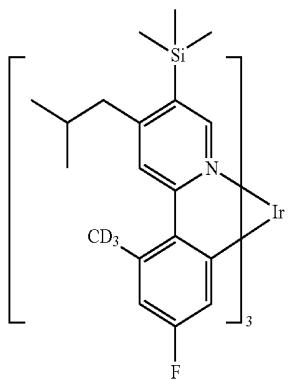
149


-continued

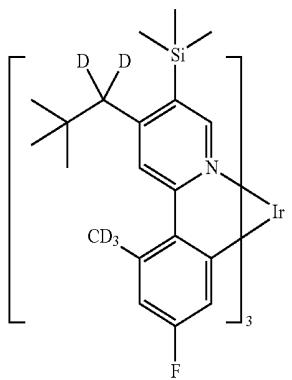
-continued



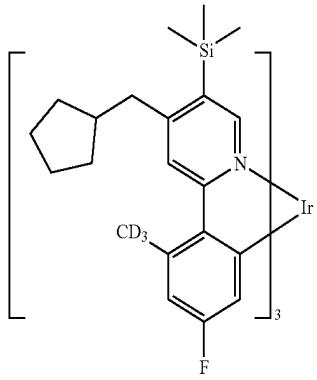
-continued


158

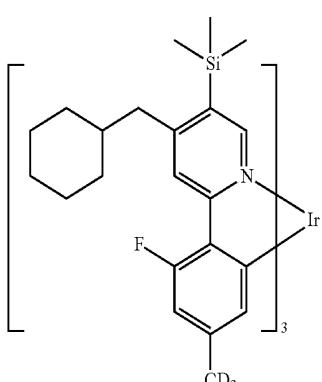
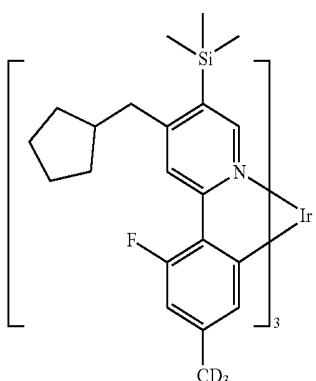
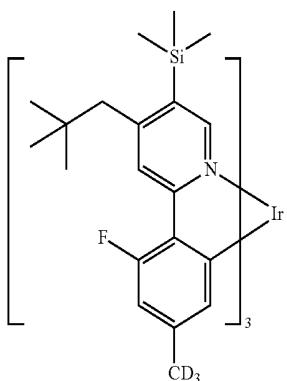
-continued


162

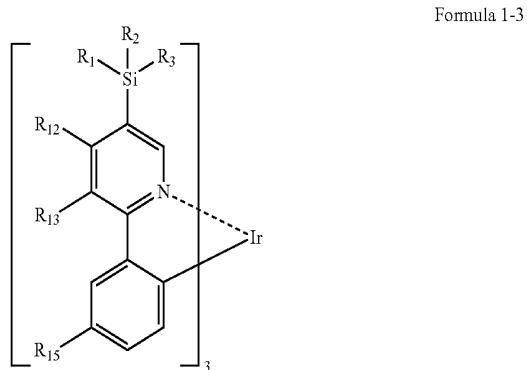
159


163

160




164

161


165

-continued

18. An organic light-emitting device comprising:
 a first electrode;
 a second electrode; and
 an organic layer disposed between the first electrode and
 the second electrode,
 wherein the organic layer comprises an emission layer,
 and at least one organometallic compound of claim 1.
 19. The organic light-emitting device of claim 19, wherein
 the emission layer comprises the at least one organome-
 tallic compound.

20. An organometallic compound represented by Formula 1-3:

wherein in Formula 1-3,
 R₁ to R₃ are each independently selected from a hydrogen, a deuterium, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubstituted C₆-C₆₀ aryloxy group, a substituted or unsubstituted C₆-C₆₀ arylthio group, a substituted or unsubstituted C₇-C₆₀ arylalkyl group, a substituted or unsubstituted C₁-C₆₀ heteroaryl group, a substituted or unsubstituted C₂-C₆₀ heteroaryloxy group, a substituted or unsubstituted C₂-C₆₀ heteroarylthio group, a substituted or unsubstituted C₃-C₆₀ heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q₅₁)(Q₅₂)(Q₅₃),

R₁₂ is a C₁-C₂₀ alkyl group i) substituted with at least one selected from a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group, a norbornenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and ii) unsubstituted or additionally substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, —CD₃, —CD₂H, —CDH₂, —CF₃, —CF₂H, —CFH₂, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, and a C₁-C₁₀ alkyl group;

R₁₅ is selected from a deuterium, —F, —Cl, —Br, —I, —SF₅, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubstituted C₂-C₆₀ alkenyl group, a substituted or unsubstituted C₂-C₆₀ alkynyl group, a substituted or unsubstituted C₁-C₆₀ alkoxy group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or

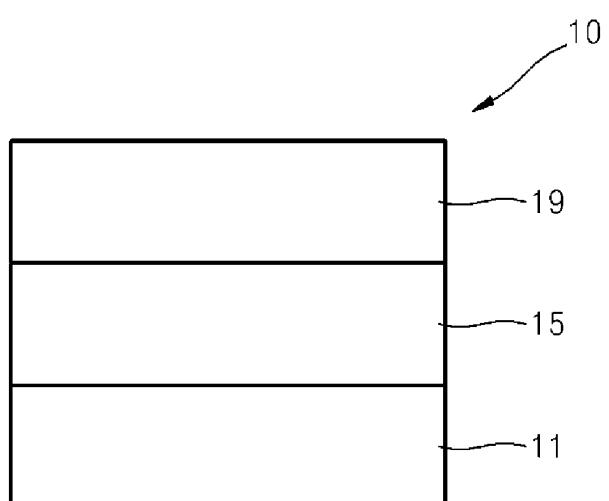
unsubstituted heterocycloalkyl group, a substituted or unsubstituted C_3 - C_{10} cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C_6 - C_{60} aryl group, a substituted or unsubstituted C_6 - C_{60} aryloxy group, a substituted or unsubstituted C_6 - C_{60} arylthio group, a substituted or unsubstituted C_7 - C_{60} arylalkyl group, a substituted or unsubstituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted C_2 - C_{60} heteroaryloxy group, a substituted or unsubstituted C_2 - C_{60} heteroarylthio group, a substituted or unsubstituted C_3 - C_{60} heterocycloalkenyl group, a substituted or unsubstituted C_1 - C_{10} heterocycloalkyl group, a substituted C_3 - C_{10} cycloalkenyl group, a substituted C_1 - C_{10} heterocycloalkenyl group, a substituted C_6 - C_{60} aryl group, a substituted C_6 - C_{60} aryloxy group, a substituted C_6 - C_{60} arylthio group, a substituted C_7 - C_{60} arylalkyl group, a substituted C_1 - C_{60} heteroaryl group, a substituted C_2 - C_{60} heteroaryloxy group, a substituted C_2 - C_{60} heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_1)(\text{Q}_2)$, $-\text{B}(\text{Q}_3)(\text{Q}_4)$, and $-\text{P}(=\text{O})(\text{Q}_5)(\text{Q}_6)$,

at least one of substituents of the substituted C_1 - C_{60} alkyl group, substituted C_2 - C_{60} alkenyl group, substituted C_2 - C_{60} alkynyl group, substituted C_1 - C_{60} alkoxy group, substituted C_3 - C_{10} cycloalkyl group, substituted C_1 - C_{10} heterocycloalkyl group, substituted C_3 - C_{10} cycloalkenyl group, substituted C_1 - C_{10} heterocycloalkenyl group, substituted C_6 - C_{60} aryl group, substituted C_6 - C_{60} aryloxy group, substituted C_6 - C_{60} arylthio group, substituted C_7 - C_{60} arylalkyl group, substituted C_1 - C_{60} heteroaryl group, substituted C_2 - C_{60} heteroaryloxy group, substituted C_2 - C_{60} heteroarylthio group, substituted C_3 - C_{60} heteroarylalkyl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:

- a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group;
- a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} aryloxy group, each substituted with at least one selected from a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_{11})(\text{Q}_{12})$, $-\text{B}(\text{Q}_{13})(\text{Q}_{14})$, and $-\text{P}(=\text{O})(\text{Q}_{15})(\text{Q}_{16})$;
- a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;

- a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, $-\text{CD}_3$, $-\text{CD}_2\text{H}$, $-\text{CDH}_2$, $-\text{CF}_3$, $-\text{CF}_2\text{H}$, $-\text{CFH}_2$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C_1 - C_{60} alkoxy group, a C_3 - C_{10} cycloalkyl group, a C_1 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_1 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_7 - C_{60} arylalkyl group, a C_1 - C_{60} heteroaryl group, a C_2 - C_{60} heteroaryloxy group, a C_2 - C_{60} heteroarylthio group, a C_3 - C_{60} heteroarylalkyl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-\text{N}(\text{Q}_{21})(\text{Q}_{22})$, $-\text{B}(\text{Q}_{23})(\text{Q}_{24})$, and $-\text{P}(=\text{O})(\text{Q}_{25})(\text{Q}_{26})$; and $-\text{N}(\text{Q}_{31})(\text{Q}_{32})$, $-\text{B}(\text{Q}_{33})(\text{Q}_{34})$, and $-\text{P}(=\text{O})(\text{Q}_{35})(\text{Q}_{36})$;


wherein Q_1 to Q_6 , Q_{11} to Q_{16} , Q_{21} to Q_{26} , Q_{31} to Q_{36} , and Q_{51} to Q_{53} are each independently selected from a hydrogen, a deuterium, $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, $-\text{I}$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a substituted or unsubstituted C_2 - C_{60} alkenyl group, a substituted or unsubstituted C_2 - C_{60} alkynyl group, a substituted or unsubstituted C_1 - C_{60} alkoxy group, a substituted or unsubstituted C_3 - C_{10} cycloalkyl group, a substituted or unsubstituted heterocycloalkyl group, a substituted or unsubstituted C_3 - C_{10} cycloalkenyl group, a substituted or unsubstituted heterocycloalkenyl group, a substituted or unsubstituted C_6 - C_{60} aryl group, a substituted or unsubstituted C_6 - C_{60} arylthio group, a substituted or unsubstituted C_7 - C_{60} arylalkyl group, a substituted or unsubstituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted C_2 - C_{60} heteroaryloxy group, a substituted or unsubstituted C_2 - C_{60} heteroarylthio group, a substituted or unsubstituted C_3 - C_{60} heteroarylalkyl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

* * * * *

专利名称(译)	有机金属化合物和包括该有机金属化合物的有机发光器件		
公开(公告)号	US20200212323A1	公开(公告)日	2020-07-02
申请号	US16/815128	申请日	2020-03-11
[标]申请(专利权)人(译)	三星电子株式会社		
申请(专利权)人(译)	SAMSUNG ELECTRONICS CO. , LTD.		
当前申请(专利权)人(译)	SAMSUNG ELECTRONICS CO. , LTD.		
[标]发明人	HWANG KYUYOUNG LEE KUM HEE LEE JIYOUN JEON ARAM KWAK YOONHYUN KWON OHYUN KIM SANGDONG CHOI BYOUNGKI		
发明人	HWANG, KYUYOUNG LEE, KUM HEE LEE, JIYOUN JEON, ARAM KWAK, YOONHYUN KWON, OHYUN KIM, SANGDONG CHOI, BYOUNGKI		
IPC分类号	H01L51/00 C07F15/00 C09K11/06		
CPC分类号	H01L2251/552 C09K2211/185 C09K2211/1029 H01L51/5016 C09K11/06 H01L51/0094 C07F15/0033 H01L51/0081 H01L51/0085		
优先权	1020150035156 2015-03-13 KR		
外部链接	Espacenet USPTO		

摘要(译)

式1表示的有机金属化合物: 其中,式1,CY 1 ,R 1 到R 3 ,R 11 到R 13 ,R 21 和b1与规范中描述的相同。

